About Anaconda Help Download Anaconda

The core of the package is cvr2.ipflasso(), an extension of glmnet to be used when the (large) set of available predictors is partitioned into several modalities which potentially differ with respect to their information content in terms of prediction. For example, in biomedical applications patient outcome such as survival time or response to therapy may have to be predicted based on, say, mRNA data, miRNA data, methylation data, CNV data, clinical data, etc. The clinical predictors are on average often much more important for outcome prediction than the mRNA data. The ipflasso method takes this problem into account by using different penalty parameters for predictors from different modalities. The ratio between the different penalty parameters can be chosen by cross-validation.

copied from cf-staging / r-ipflasso
Click on a badge to see how to embed it in your web page
badge
https://anaconda.org/conda-forge/r-ipflasso/badges/version.svg
badge
https://anaconda.org/conda-forge/r-ipflasso/badges/latest_release_date.svg
badge
https://anaconda.org/conda-forge/r-ipflasso/badges/latest_release_relative_date.svg
badge
https://anaconda.org/conda-forge/r-ipflasso/badges/platforms.svg
badge
https://anaconda.org/conda-forge/r-ipflasso/badges/license.svg
badge
https://anaconda.org/conda-forge/r-ipflasso/badges/downloads.svg

© 2024 Anaconda, Inc. All Rights Reserved. (v4.0.6) Legal | Privacy Policy