The core of the package is cvr2.ipflasso(), an extension of glmnet to be used when the (large) set of available predictors is partitioned into several modalities which potentially differ with respect to their information content in terms of prediction. For example, in biomedical applications patient outcome such as survival time or response to therapy may have to be predicted based on, say, mRNA data, miRNA data, methylation data, CNV data, clinical data, etc. The clinical predictors are on average often much more important for outcome prediction than the mRNA data. The ipflasso method takes this problem into account by using different penalty parameters for predictors from different modalities. The ratio between the different penalty parameters can be chosen by cross-validation.

Installers

Info: This package contains files in non-standard labels.

conda install

  • noarch  v0.2
To install this package with conda run one of the following:
conda install -c conda-forge r-ipflasso
conda install -c conda-forge/label/gcc7 r-ipflasso
conda install -c conda-forge/label/cf201901 r-ipflasso

Description

PRIVACY POLICY  |  EULA (Anaconda Cloud v2.33.29) © 2019 Anaconda, Inc. All Rights Reserved.