About Anaconda Help Download Anaconda

Smooth additive quantile regression models, fitted using the methods of Fasiolo et al. (2017) <arXiv:1707.03307>. Differently from 'quantreg', the smoothing parameters are estimated automatically by marginal loss minimization, while the regression coefficients are estimated using either PIRLS or Newton algorithm. The learning rate is determined so that the Bayesian credible intervals of the estimated effects have approximately the correct coverage. The main function is qgam() which is similar to gam() in 'mgcv', but fits non-parametric quantile regression models.

copied from cf-pre-staging / r-qgam
Type Size Name Uploaded Downloads Labels
conda 3.3 MB | win-64/r-qgam-1.3.2-r40hda5aaf8_1.tar.bz2  4 years and 10 months ago 1017 main
conda 3.3 MB | win-64/r-qgam-1.3.2-r36hda5aaf8_1.tar.bz2  4 years and 10 months ago 1019 main
conda 3.3 MB | osx-64/r-qgam-1.3.2-r36h17f1fa6_1.tar.bz2  4 years and 10 months ago 310 main
conda 3.2 MB | osx-64/r-qgam-1.3.2-r40h17f1fa6_1.tar.bz2  4 years and 10 months ago 326 main
conda 3.3 MB | linux-64/r-qgam-1.3.2-r40hcdcec82_1.tar.bz2  4 years and 10 months ago 3428 main
conda 3.2 MB | linux-64/r-qgam-1.3.2-r36hcdcec82_1.tar.bz2  4 years and 10 months ago 3427 main
conda 3.3 MB | win-64/r-qgam-1.3.2-r36hda5aaf8_0.tar.bz2  4 years and 11 months ago 1041 main
conda 3.3 MB | win-64/r-qgam-1.3.2-r35hda5aaf8_0.tar.bz2  4 years and 11 months ago 1042 main
conda 3.3 MB | osx-64/r-qgam-1.3.2-r36h17f1fa6_0.tar.bz2  4 years and 11 months ago 329 main
conda 3.3 MB | osx-64/r-qgam-1.3.2-r35h17f1fa6_0.tar.bz2  4 years and 11 months ago 306 main
conda 3.2 MB | linux-64/r-qgam-1.3.2-r36hcdcec82_0.tar.bz2  4 years and 11 months ago 3284 main
conda 3.3 MB | linux-64/r-qgam-1.3.2-r35hcdcec82_0.tar.bz2  4 years and 11 months ago 3252 main

© 2025 Anaconda, Inc. All Rights Reserved. (v4.1.0) Legal | Privacy Policy