About Anaconda Help Download Anaconda

Smooth additive quantile regression models, fitted using the methods of Fasiolo et al. (2017) <arXiv:1707.03307>. Differently from 'quantreg', the smoothing parameters are estimated automatically by marginal loss minimization, while the regression coefficients are estimated using either PIRLS or Newton algorithm. The learning rate is determined so that the Bayesian credible intervals of the estimated effects have approximately the correct coverage. The main function is qgam() which is similar to gam() in 'mgcv', but fits non-parametric quantile regression models.

copied from cf-pre-staging / r-qgam
Type Size Name Uploaded Downloads Labels
conda 3.3 MB | win-64/r-qgam-1.3.2-r40hda5aaf8_1.tar.bz2  5 years and 23 days ago 1022 main
conda 3.3 MB | win-64/r-qgam-1.3.2-r36hda5aaf8_1.tar.bz2  5 years and 23 days ago 1023 main
conda 3.3 MB | osx-64/r-qgam-1.3.2-r36h17f1fa6_1.tar.bz2  5 years and 23 days ago 310 main
conda 3.2 MB | osx-64/r-qgam-1.3.2-r40h17f1fa6_1.tar.bz2  5 years and 23 days ago 327 main
conda 3.3 MB | linux-64/r-qgam-1.3.2-r40hcdcec82_1.tar.bz2  5 years and 23 days ago 3539 main
conda 3.2 MB | linux-64/r-qgam-1.3.2-r36hcdcec82_1.tar.bz2  5 years and 23 days ago 3528 main
conda 3.3 MB | win-64/r-qgam-1.3.2-r36hda5aaf8_0.tar.bz2  5 years and 23 days ago 1044 main
conda 3.3 MB | win-64/r-qgam-1.3.2-r35hda5aaf8_0.tar.bz2  5 years and 23 days ago 1045 main
conda 3.3 MB | osx-64/r-qgam-1.3.2-r36h17f1fa6_0.tar.bz2  5 years and 23 days ago 331 main
conda 3.3 MB | osx-64/r-qgam-1.3.2-r35h17f1fa6_0.tar.bz2  5 years and 23 days ago 308 main
conda 3.2 MB | linux-64/r-qgam-1.3.2-r36hcdcec82_0.tar.bz2  5 years and 23 days ago 3402 main
conda 3.3 MB | linux-64/r-qgam-1.3.2-r35hcdcec82_0.tar.bz2  5 years and 23 days ago 3366 main

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.0) Legal | Privacy Policy