About Anaconda Help Download Anaconda

Smooth additive quantile regression models, fitted using the methods of Fasiolo et al. (2017) <arXiv:1707.03307>. Differently from 'quantreg', the smoothing parameters are estimated automatically by marginal loss minimization, while the regression coefficients are estimated using either PIRLS or Newton algorithm. The learning rate is determined so that the Bayesian credible intervals of the estimated effects have approximately the correct coverage. The main function is qgam() which is similar to gam() in 'mgcv', but fits non-parametric quantile regression models.

copied from cf-staging / r-qgam

Installers

  • linux-aarch64 v1.3.4
  • linux-64 v1.3.4
  • linux-ppc64le v1.3.4
  • osx-64 v1.3.4
  • osx-arm64 v1.3.4
  • win-64 v1.3.4

conda install

To install this package run one of the following:
conda install conda-forge::r-qgam

Description


© 2024 Anaconda, Inc. All Rights Reserved. (v4.0.6) Legal | Privacy Policy