About Anaconda Help Download Anaconda

Smooth additive quantile regression models, fitted using the methods of Fasiolo et al. (2017) <arXiv:1707.03307>. Differently from 'quantreg', the smoothing parameters are estimated automatically by marginal loss minimization, while the regression coefficients are estimated using either PIRLS or Newton algorithm. The learning rate is determined so that the Bayesian credible intervals of the estimated effects have approximately the correct coverage. The main function is qgam() which is similar to gam() in 'mgcv', but fits non-parametric quantile regression models.

copied from cf-staging / r-qgam
Type Size Name Uploaded Downloads Labels
conda 3.3 MB | win-64/r-qgam-1.3.3-r41h6d2157b_0.tar.bz2  3 years and 7 months ago 806 main
conda 3.3 MB | osx-64/r-qgam-1.3.3-r41h28b5c78_0.tar.bz2  3 years and 7 months ago 140 main
conda 3.3 MB | linux-64/r-qgam-1.3.3-r41hcfec24a_0.tar.bz2  3 years and 7 months ago 2276 main
conda 3.3 MB | win-64/r-qgam-1.3.3-r36h6d2157b_0.tar.bz2  3 years and 8 months ago 857 main
conda 3.3 MB | win-64/r-qgam-1.3.3-r40h6d2157b_0.tar.bz2  3 years and 8 months ago 841 main
conda 3.3 MB | osx-64/r-qgam-1.3.3-r36h28b5c78_0.tar.bz2  3 years and 8 months ago 180 main
conda 3.3 MB | osx-64/r-qgam-1.3.3-r40h28b5c78_0.tar.bz2  3 years and 8 months ago 174 main
conda 3.3 MB | linux-64/r-qgam-1.3.3-r36hcfec24a_0.tar.bz2  3 years and 8 months ago 2299 main
conda 3.3 MB | linux-64/r-qgam-1.3.3-r40hcfec24a_0.tar.bz2  3 years and 8 months ago 2408 main

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.6) Legal | Privacy Policy