About Anaconda Help Download Anaconda

Smooth additive quantile regression models, fitted using the methods of Fasiolo et al. (2017) <arXiv:1707.03307>. Differently from 'quantreg', the smoothing parameters are estimated automatically by marginal loss minimization, while the regression coefficients are estimated using either PIRLS or Newton algorithm. The learning rate is determined so that the Bayesian credible intervals of the estimated effects have approximately the correct coverage. The main function is qgam() which is similar to gam() in 'mgcv', but fits non-parametric quantile regression models.

copied from cf-pre-staging / r-qgam
Type Size Name Uploaded Downloads Labels
conda 3.3 MB | win-64/r-qgam-1.3.2-r40hda5aaf8_1.tar.bz2  5 years and 1 month ago 1025 main
conda 3.3 MB | win-64/r-qgam-1.3.2-r36hda5aaf8_1.tar.bz2  5 years and 1 month ago 1026 main
conda 3.3 MB | osx-64/r-qgam-1.3.2-r36h17f1fa6_1.tar.bz2  5 years and 1 month ago 312 main
conda 3.2 MB | osx-64/r-qgam-1.3.2-r40h17f1fa6_1.tar.bz2  5 years and 1 month ago 329 main
conda 3.3 MB | linux-64/r-qgam-1.3.2-r40hcdcec82_1.tar.bz2  5 years and 1 month ago 3578 main
conda 3.2 MB | linux-64/r-qgam-1.3.2-r36hcdcec82_1.tar.bz2  5 years and 1 month ago 3572 main
conda 3.3 MB | win-64/r-qgam-1.3.2-r36hda5aaf8_0.tar.bz2  5 years and 1 month ago 1047 main
conda 3.3 MB | win-64/r-qgam-1.3.2-r35hda5aaf8_0.tar.bz2  5 years and 1 month ago 1048 main
conda 3.3 MB | osx-64/r-qgam-1.3.2-r36h17f1fa6_0.tar.bz2  5 years and 1 month ago 333 main
conda 3.3 MB | osx-64/r-qgam-1.3.2-r35h17f1fa6_0.tar.bz2  5 years and 1 month ago 310 main
conda 3.2 MB | linux-64/r-qgam-1.3.2-r36hcdcec82_0.tar.bz2  5 years and 1 month ago 3445 main
conda 3.3 MB | linux-64/r-qgam-1.3.2-r35hcdcec82_0.tar.bz2  5 years and 1 month ago 3404 main

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.0) Legal | Privacy Policy