About Anaconda Help Download Anaconda

Smooth additive quantile regression models, fitted using the methods of Fasiolo et al. (2017) <arXiv:1707.03307>. Differently from 'quantreg', the smoothing parameters are estimated automatically by marginal loss minimization, while the regression coefficients are estimated using either PIRLS or Newton algorithm. The learning rate is determined so that the Bayesian credible intervals of the estimated effects have approximately the correct coverage. The main function is qgam() which is similar to gam() in 'mgcv', but fits non-parametric quantile regression models.

copied from cf-post-staging / r-qgam
Type Size Name Uploaded Downloads Labels
conda 3.3 MB | win-64/r-qgam-1.3.2-r40hda5aaf8_1.tar.bz2  5 years and 2 months ago 1027 main
conda 3.3 MB | win-64/r-qgam-1.3.2-r36hda5aaf8_1.tar.bz2  5 years and 2 months ago 1028 main
conda 3.3 MB | osx-64/r-qgam-1.3.2-r36h17f1fa6_1.tar.bz2  5 years and 2 months ago 313 main
conda 3.2 MB | osx-64/r-qgam-1.3.2-r40h17f1fa6_1.tar.bz2  5 years and 2 months ago 330 main
conda 3.3 MB | linux-64/r-qgam-1.3.2-r40hcdcec82_1.tar.bz2  5 years and 2 months ago 3649 main
conda 3.2 MB | linux-64/r-qgam-1.3.2-r36hcdcec82_1.tar.bz2  5 years and 2 months ago 3640 main
conda 3.3 MB | win-64/r-qgam-1.3.2-r36hda5aaf8_0.tar.bz2  5 years and 2 months ago 1049 main
conda 3.3 MB | win-64/r-qgam-1.3.2-r35hda5aaf8_0.tar.bz2  5 years and 2 months ago 1050 main
conda 3.3 MB | osx-64/r-qgam-1.3.2-r36h17f1fa6_0.tar.bz2  5 years and 2 months ago 334 main
conda 3.3 MB | osx-64/r-qgam-1.3.2-r35h17f1fa6_0.tar.bz2  5 years and 2 months ago 311 main
conda 3.2 MB | linux-64/r-qgam-1.3.2-r36hcdcec82_0.tar.bz2  5 years and 2 months ago 3513 main
conda 3.3 MB | linux-64/r-qgam-1.3.2-r35hcdcec82_0.tar.bz2  5 years and 2 months ago 3476 main

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.2) Legal | Privacy Policy