About Anaconda Help Download Anaconda

Provides functions that performs popular stochastic gradient Markov chain Monte Carlo (SGMCMC) methods on user specified models. The required gradients are automatically calculated using 'TensorFlow' <https://www.tensorflow.org/>, an efficient library for numerical computation. This means only the log likelihood and log prior functions need to be specified. The methods implemented include stochastic gradient Langevin dynamics (SGLD), stochastic gradient Hamiltonian Monte Carlo (SGHMC), stochastic gradient Nose-Hoover thermostat (SGNHT) and their respective control variate versions for increased efficiency. References: M. Welling, Y. W. Teh (2011) <http://www.icml-2011.org/papers/398_icmlpaper.pdf>; T. Chen, E. B. Fox, C. E. Guestrin (2014) <arXiv:1402.4102>; N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, H. Neven (2014) <https://papers.nips.cc/paper/5592-bayesian-sampling-using-stochastic-gradient-thermostats>; J. Baker, P. Fearnhead, E. B. Fox, C. Nemeth (2017) <arXiv:1706.05439>.

Click on a badge to see how to embed it in your web page
badge
https://anaconda.org/r_test/r-sgmcmc/badges/version.svg
badge
https://anaconda.org/r_test/r-sgmcmc/badges/latest_release_date.svg
badge
https://anaconda.org/r_test/r-sgmcmc/badges/latest_release_relative_date.svg
badge
https://anaconda.org/r_test/r-sgmcmc/badges/platforms.svg
badge
https://anaconda.org/r_test/r-sgmcmc/badges/license.svg
badge
https://anaconda.org/r_test/r-sgmcmc/badges/downloads.svg

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.6) Legal | Privacy Policy