About Anaconda Help Download Anaconda

r_test / packages / r-sgmcmc 0.2.4

Provides functions that performs popular stochastic gradient Markov chain Monte Carlo (SGMCMC) methods on user specified models. The required gradients are automatically calculated using 'TensorFlow' <https://www.tensorflow.org/>, an efficient library for numerical computation. This means only the log likelihood and log prior functions need to be specified. The methods implemented include stochastic gradient Langevin dynamics (SGLD), stochastic gradient Hamiltonian Monte Carlo (SGHMC), stochastic gradient Nose-Hoover thermostat (SGNHT) and their respective control variate versions for increased efficiency. References: M. Welling, Y. W. Teh (2011) <http://www.icml-2011.org/papers/398_icmlpaper.pdf>; T. Chen, E. B. Fox, C. E. Guestrin (2014) <arXiv:1402.4102>; N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, H. Neven (2014) <https://papers.nips.cc/paper/5592-bayesian-sampling-using-stochastic-gradient-thermostats>; J. Baker, P. Fearnhead, E. B. Fox, C. Nemeth (2017) <arXiv:1706.05439>.

Installers

  • noarch v0.2.4

conda install

To install this package run one of the following:
conda install r_test::r-sgmcmc

Description


© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.6) Legal | Privacy Policy