A dataset is said to be unbalanced when the class of interest (minority class) is much rarer than normal behaviour (majority class). The cost of missing a minority class is typically much higher that missing a majority class. Most learning systems are not prepared to cope with unbalanced data and several techniques have been proposed. This package implements some of most well-known techniques and propose a racing algorithm to select adaptively the most appropriate strategy for a given unbalanced task.
copied from cf-staging / r-unbalancedLabel | Latest Version |
---|---|
main | 2.0 |