It parses a fitted 'R' model object, and returns a formula in 'Tidy Eval' code that calculates the predictions. It works with several databases back-ends because it leverages 'dplyr' and 'dbplyr' for the final 'SQL' translation of the algorithm. It currently supports lm(), glm(), randomForest(), ranger(), earth(), xgb.Booster.complete(), cubist(), and ctree() models.
copied from cf-staging / r-tidypredictconda install conda-forge::r-tidypredict
conda install conda-forge/label/cf201901::r-tidypredict
conda install conda-forge/label/cf202003::r-tidypredict
conda install conda-forge/label/gcc7::r-tidypredict