About Anaconda Help Download Anaconda

The SALSO algorithm is an efficient randomized greedy search method to find a point estimate for a random partition based on a loss function and posterior Monte Carlo samples. The algorithm is implemented for many loss functions, including the Binder loss and a generalization of the variation of information loss, both of which allow for unequal weights on the two types of clustering mistakes. Efficient implementations are also provided for Monte Carlo estimation of the posterior expected loss of a given clustering estimate. See Dahl, Johnson, Müller (2022) <doi:10.1080/10618600.2022.2069779>.

copied from cf-pre-staging / r-salso
Type Size Name Uploaded Downloads Labels
conda 807.3 kB | osx-64/r-salso-0.3.35-r44h6b9d099_1.conda  10 months and 28 days ago 435 main
conda 800.9 kB | osx-64/r-salso-0.3.35-r43h6b9d099_1.conda  10 months and 28 days ago 399 main
conda 1.4 MB | linux-64/r-salso-0.3.35-r44hdb488b9_1.conda  10 months and 28 days ago 1278 main
conda 1.4 MB | linux-64/r-salso-0.3.35-r43hdb488b9_1.conda  10 months and 28 days ago 1307 main
conda 900.8 kB | osx-64/r-salso-0.3.35-r43h6dc245f_0.conda  1 year and 10 months ago 416 main
conda 901.1 kB | osx-64/r-salso-0.3.35-r42h6dc245f_0.conda  1 year and 10 months ago 417 main
conda 1.6 MB | linux-64/r-salso-0.3.35-r42h57805ef_0.conda  1 year and 10 months ago 1733 main
conda 1.6 MB | linux-64/r-salso-0.3.35-r43h57805ef_0.conda  1 year and 10 months ago 1699 main

© 2025 Anaconda, Inc. All Rights Reserved. (v4.1.0) Legal | Privacy Policy