About Anaconda Help Download Anaconda

The SALSO algorithm is an efficient randomized greedy search method to find a point estimate for a random partition based on a loss function and posterior Monte Carlo samples. The algorithm is implemented for many loss functions, including the Binder loss and a generalization of the variation of information loss, both of which allow for unequal weights on the two types of clustering mistakes. Efficient implementations are also provided for Monte Carlo estimation of the posterior expected loss of a given clustering estimate. See Dahl, Johnson, Müller (2022) <doi:10.1080/10618600.2022.2069779>.

copied from cf-pre-staging / r-salso
Type Size Name Uploaded Downloads Labels
conda 807.3 kB | osx-64/r-salso-0.3.35-r44h6b9d099_1.conda  1 year and 18 days ago 439 main
conda 800.9 kB | osx-64/r-salso-0.3.35-r43h6b9d099_1.conda  1 year and 18 days ago 404 main
conda 1.4 MB | linux-64/r-salso-0.3.35-r44hdb488b9_1.conda  1 year and 18 days ago 1393 main
conda 1.4 MB | linux-64/r-salso-0.3.35-r43hdb488b9_1.conda  1 year and 18 days ago 1415 main
conda 900.8 kB | osx-64/r-salso-0.3.35-r43h6dc245f_0.conda  2 years and 6 days ago 418 main
conda 901.1 kB | osx-64/r-salso-0.3.35-r42h6dc245f_0.conda  2 years and 6 days ago 419 main
conda 1.6 MB | linux-64/r-salso-0.3.35-r42h57805ef_0.conda  2 years and 6 days ago 1834 main
conda 1.6 MB | linux-64/r-salso-0.3.35-r43h57805ef_0.conda  2 years and 6 days ago 1808 main

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.0) Legal | Privacy Policy