About Anaconda Help Download Anaconda

The SALSO algorithm is an efficient randomized greedy search method to find a point estimate for a random partition based on a loss function and posterior Monte Carlo samples. The algorithm is implemented for many loss functions, including the Binder loss and a generalization of the variation of information loss, both of which allow for unequal weights on the two types of clustering mistakes. Efficient implementations are also provided for Monte Carlo estimation of the posterior expected loss of a given clustering estimate. See Dahl, Johnson, Müller (2022) <doi:10.1080/10618600.2022.2069779>.

copied from cf-post-staging / r-salso
Type Size Name Uploaded Downloads Labels
conda 807.3 kB | osx-64/r-salso-0.3.35-r44h6b9d099_1.conda  1 year and 2 months ago 447 main
conda 800.9 kB | osx-64/r-salso-0.3.35-r43h6b9d099_1.conda  1 year and 2 months ago 411 main
conda 1.4 MB | linux-64/r-salso-0.3.35-r44hdb488b9_1.conda  1 year and 2 months ago 1531 main
conda 1.4 MB | linux-64/r-salso-0.3.35-r43hdb488b9_1.conda  1 year and 2 months ago 1550 main
conda 900.8 kB | osx-64/r-salso-0.3.35-r43h6dc245f_0.conda  2 years and 2 months ago 422 main
conda 901.1 kB | osx-64/r-salso-0.3.35-r42h6dc245f_0.conda  2 years and 2 months ago 423 main
conda 1.6 MB | linux-64/r-salso-0.3.35-r42h57805ef_0.conda  2 years and 2 months ago 1956 main
conda 1.6 MB | linux-64/r-salso-0.3.35-r43h57805ef_0.conda  2 years and 2 months ago 1942 main

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.2) Legal | Privacy Policy