About Anaconda Help Download Anaconda

The SALSO algorithm is an efficient randomized greedy search method to find a point estimate for a random partition based on a loss function and posterior Monte Carlo samples. The algorithm is implemented for many loss functions, including the Binder loss and a generalization of the variation of information loss, both of which allow for unequal weights on the two types of clustering mistakes. Efficient implementations are also provided for Monte Carlo estimation of the posterior expected loss of a given clustering estimate. See Dahl, Johnson, Müller (2022) <doi:10.1080/10618600.2022.2069779>.

copied from cf-post-staging / r-salso
Type Size Name Uploaded Downloads Labels
conda 807.3 kB | osx-64/r-salso-0.3.35-r44h6b9d099_1.conda  1 year and 5 months ago 463 main
conda 800.9 kB | osx-64/r-salso-0.3.35-r43h6b9d099_1.conda  1 year and 5 months ago 423 main
conda 1.4 MB | linux-64/r-salso-0.3.35-r44hdb488b9_1.conda  1 year and 5 months ago 1735 main
conda 1.4 MB | linux-64/r-salso-0.3.35-r43hdb488b9_1.conda  1 year and 5 months ago 1771 main
conda 900.8 kB | osx-64/r-salso-0.3.35-r43h6dc245f_0.conda  2 years and 5 months ago 427 main
conda 901.1 kB | osx-64/r-salso-0.3.35-r42h6dc245f_0.conda  2 years and 5 months ago 428 main
conda 1.6 MB | linux-64/r-salso-0.3.35-r42h57805ef_0.conda  2 years and 5 months ago 2139 main
conda 1.6 MB | linux-64/r-salso-0.3.35-r43h57805ef_0.conda  2 years and 5 months ago 2124 main

© 2026 Anaconda, Inc. All Rights Reserved. (v4.2.13) Legal | Privacy Policy