About Anaconda Help Download Anaconda

Multiple imputation using Fully Conditional Specification (FCS) implemented by the MICE algorithm as described in Van Buuren and Groothuis-Oudshoorn (2011) <doi:10.18637/jss.v045.i03>. Each variable has its own imputation model. Built-in imputation models are provided for continuous data (predictive mean matching, normal), binary data (logistic regression), unordered categorical data (polytomous logistic regression) and ordered categorical data (proportional odds). MICE can also impute continuous two-level data (normal model, pan, second-level variables). Passive imputation can be used to maintain consistency between variables. Various diagnostic plots are available to inspect the quality of the imputations.

copied from cf-staging / r-mice

Installers

Info: This package contains files in non-standard labels.
  • linux-64 v3.17.0
  • linux-aarch64 v3.17.0
  • linux-ppc64le v3.17.0
  • osx-64 v3.17.0
  • win-64 v3.17.0
  • osx-arm64 v3.17.0

conda install

To install this package run one of the following:
conda install conda-forge::r-mice
conda install conda-forge/label/cf201901::r-mice
conda install conda-forge/label/cf202003::r-mice
conda install conda-forge/label/gcc7::r-mice

Description


© 2024 Anaconda, Inc. All Rights Reserved. (v4.0.6) Legal | Privacy Policy