Computes the posterior model probabilities for standard meta-analysis models (null model vs. alternative model assuming either fixed- or random-effects, respectively). These posterior probabilities are used to estimate the overall mean effect size as the weighted average of the mean effect size estimates of the random- and fixed-effect model as proposed by Gronau, Van Erp, Heck, Cesario, Jonas, & Wagenmakers (2017, <doi:10.1080/23743603.2017.1326760>). The user can define a wide range of non-informative or informative priors for the mean effect size and the heterogeneity coefficient. Moreover, using pre-compiled Stan models, meta-analysis with continuous and discrete moderators with Jeffreys-Zellner-Siow (JZS) priors can be fitted and tested. This allows to compute Bayes factors and perform Bayesian model averaging across random- and fixed-effects meta-analysis with and without moderators.

Installers

conda install

  • linux-64  v0.6.2
  • osx-64  v0.6.2
To install this package with conda run:
conda install -c conda-forge r-metabma

Description

PRIVACY POLICY  |  EULA (Anaconda Cloud v2.33.29) © 2019 Anaconda, Inc. All Rights Reserved.