CMD + K

r-ashr

Community

The R package 'ashr' implements an Empirical Bayes approach for large-scale hypothesis testing and false discovery rate (FDR) estimation based on the methods proposed in M. Stephens, 2016, "False discovery rates: a new deal", <DOI:10.1093/biostatistics/kxw041>. These methods can be applied whenever two sets of summary statistics---estimated effects and standard errors---are available, just as 'qvalue' can be applied to previously computed p-values. Two main interfaces are provided: ash(), which is more user-friendly; and ash.workhorse(), which has more options and is geared toward advanced users. The ash() and ash.workhorse() also provides a flexible modeling interface that can accommodate a variety of likelihoods (e.g., normal, Poisson) and mixture priors (e.g., uniform, normal).

Installation

To install this package, run one of the following:

Conda
$conda install conda-forge::r-ashr

Usage Tracking

2.2_63
2.2_54
2.2_47
2.2_40
2.2_39
5 / 8 versions selected
Downloads (Last 6 months): 0

About

Summary

The R package 'ashr' implements an Empirical Bayes approach for large-scale hypothesis testing and false discovery rate (FDR) estimation based on the methods proposed in M. Stephens, 2016, "False discovery rates: a new deal", <DOI:10.1093/biostatistics/kxw041>. These methods can be applied whenever two sets of summary statistics---estimated effects and standard errors---are available, just as 'qvalue' can be applied to previously computed p-values. Two main interfaces are provided: ash(), which is more user-friendly; and ash.workhorse(), which has more options and is geared toward advanced users. The ash() and ash.workhorse() also provides a flexible modeling interface that can accommodate a variety of likelihoods (e.g., normal, Poisson) and mixture priors (e.g., uniform, normal).

Last Updated

Aug 22, 2023 at 02:31

License

GPL-3.0-or-later

Total Downloads

453.0K

Supported Platforms

linux-ppc64le
linux-aarch64
linux-64
macOS-64
win-64
macOS-arm64