Simulation, power evaluation, and sample size recommendation for single cell RNA-seq
Determining the sample size for adequate power to detect statistical significance is a crucial step at the design stage for high-throughput experiments. Even though a number of methods and tools are available for sample size calculation for microarray and RNA-seq in the context of differential expression (DE), this topic in the field of single-cell RNA sequencing is understudied. Moreover, the unique data characteristics present in scRNA-seq such as sparsity and heterogeneity increase the challenge. We propose POWSC, a simulation-based method, to provide power evaluation and sample size recommendation for single-cell RNA sequencing DE analysis. POWSC consists of a data simulator that creates realistic expression data, and a power assessor that provides a comprehensive evaluation and visualization of the power and sample size relationship.