Scalable identification of spatially variable genes in spatially-resolved transcriptomics data
Method for scalable identification of spatially variable genes (SVGs) in spatially-resolved transcriptomics data. The method is based on nearest-neighbor Gaussian processes and uses the BRISC algorithm for model fitting and parameter estimation. Allows identification and ranking of SVGs with flexible length scales across a tissue slide or within spatial domains defined by covariates. Scales linearly with the number of spatial locations and can be applied to datasets containing thousands or more spatial locations.