About Anaconda Help Download Anaconda
If you were automatically logged out you may need to refresh the page. You're trying to access a page that requires authentication. ×

Implementation of Forecastable Component Analysis ('ForeCA'), including main algorithms and auxiliary function (summary, plotting, etc.) to apply 'ForeCA' to multivariate time series data. 'ForeCA' is a novel dimension reduction (DR) technique for temporally dependent signals. Contrary to other popular DR methods, such as 'PCA' or 'ICA', 'ForeCA' takes time dependency explicitly into account and searches for the most ''forecastable'' signal. The measure of forecastability is based on the Shannon entropy of the spectral density of the transformed signal.


© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.2) Legal | Privacy Policy