Mixture model is used to achieve the clustering goal. Each component is itself a mixture model of polynomial autoregressive regressions whose the logistic weights consider the spatial and temporal information.
https://anaconda.org/r_test/r-spatimeclus/badges/version.svg
https://anaconda.org/r_test/r-spatimeclus/badges/latest_release_date.svg
https://anaconda.org/r_test/r-spatimeclus/badges/latest_release_relative_date.svg
https://anaconda.org/r_test/r-spatimeclus/badges/platforms.svg
https://anaconda.org/r_test/r-spatimeclus/badges/license.svg
https://anaconda.org/r_test/r-spatimeclus/badges/downloads.svg