About Anaconda Help Download Anaconda

A model of the form Y = f(x) + s(x) Z is fit where functions f and s are modeled with ensembles of trees and Z is standard normal. This model is developed in the paper 'Heteroscedastic BART Via Multiplicative Regression Trees' (Pratola, Chipman, George, and McCulloch, 2019, <arXiv:1709.07542v2>). BART refers to Bayesian Additive Regression Trees. See the R-package 'BART'. The predictor vector x may be high dimensional. A Markov Chain Monte Carlo (MCMC) algorithm provides Bayesian posterior uncertainty for both f and s. The MCMC uses the recent innovations in Efficient Metropolis--Hastings proposal mechanisms for Bayesian regression tree models (Pratola, 2015, Bayesian Analysis, <doi:10.1214/16-BA999>).

Click on a badge to see how to embed it in your web page
badge
https://anaconda.org/r_test/r-rbart/badges/version.svg
badge
https://anaconda.org/r_test/r-rbart/badges/latest_release_date.svg
badge
https://anaconda.org/r_test/r-rbart/badges/latest_release_relative_date.svg
badge
https://anaconda.org/r_test/r-rbart/badges/platforms.svg
badge
https://anaconda.org/r_test/r-rbart/badges/license.svg
badge
https://anaconda.org/r_test/r-rbart/badges/downloads.svg

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.6) Legal | Privacy Policy