About Anaconda Help Download Anaconda

r_test / packages / r-npbayesimputecat

These routines create multiple imputations of missing at random categorical data, and create multiply imputed synthesis of categorical data, with or without structural zeros. Imputations and syntheses are based on Dirichlet process mixtures of multinomial distributions, which is a non-parametric Bayesian modeling approach that allows for flexible joint modeling.

Click on a badge to see how to embed it in your web page
badge
https://anaconda.org/r_test/r-npbayesimputecat/badges/version.svg
badge
https://anaconda.org/r_test/r-npbayesimputecat/badges/latest_release_date.svg
badge
https://anaconda.org/r_test/r-npbayesimputecat/badges/latest_release_relative_date.svg
badge
https://anaconda.org/r_test/r-npbayesimputecat/badges/platforms.svg
badge
https://anaconda.org/r_test/r-npbayesimputecat/badges/license.svg
badge
https://anaconda.org/r_test/r-npbayesimputecat/badges/downloads.svg

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.7) Legal | Privacy Policy