About Anaconda Help Download Anaconda

r_test / packages / r-multivariance

Distance multivariance is a measure of dependence which can be used to detect and quantify dependence. The necessary functions are implemented in this packages, and examples are given. For the theoretic background we refer to the papers: B. Böttcher, Dependence and Dependence Structures: Estimation and Visualization Using Distance Multivariance. <arXiv:1712.06532>. B. Böttcher, M. Keller-Ressel, R.L. Schilling, Detecting independence of random vectors: generalized distance covariance and Gaussian covariance. VMSTA, 2018, Vol. 5, No. 3, 353-383. <arXiv:1711.07778>. B. Böttcher, M. Keller-Ressel, R.L. Schilling, Distance multivariance: New dependence measures for random vectors. <arXiv:1711.07775>. G. Berschneider, B. Böttcher, On complex Gaussian random fields, Gaussian quadratic forms and sample distance multivariance. <arXiv:1808.07280>.

Click on a badge to see how to embed it in your web page
badge
https://anaconda.org/r_test/r-multivariance/badges/version.svg
badge
https://anaconda.org/r_test/r-multivariance/badges/latest_release_date.svg
badge
https://anaconda.org/r_test/r-multivariance/badges/latest_release_relative_date.svg
badge
https://anaconda.org/r_test/r-multivariance/badges/platforms.svg
badge
https://anaconda.org/r_test/r-multivariance/badges/license.svg
badge
https://anaconda.org/r_test/r-multivariance/badges/downloads.svg

© 2024 Anaconda, Inc. All Rights Reserved. (v4.0.5) Legal | Privacy Policy