About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-geohashtools public Tools for working with Gustavo Niemeyer's geohash coordinate system, including API for interacting with other common R GIS libraries. 2025-03-25
r-geodist public Dependency-free, ultra fast calculation of geodesic distances. Includes the reference nanometre-accuracy geodesic distances of Karney (2013) <doi:10.1007/s00190-012-0578-z>, as used by the 'sf' package, as well as Haversine and Vincenty distances. Default distance measure is the "Mapbox cheap ruler" which is generally more accurate than Haversine or Vincenty for distances out to a few hundred kilometres, and is considerably faster. The main function accepts one or two inputs in almost any generic rectangular form, and returns either matrices of pairwise distances, or vectors of sequential distances. 2025-03-25
r-geocount public This package provides a variety of functions to analyze and model geostatistical count data with generalized linear spatial models, including 1) simulate and visualize the data; 2) posterior sampling with robust MCMC algorithms (in serial or parallel way); 3) perform prediction for unsampled locations; 4) conduct Bayesian model checking procedure to evaluate the goodness of fitting; 5) conduct transformed residual checking procedure. In the package, seamlessly embedded C++ programs and parallel computing techniques are implemented to speed up the computing processes. 2025-03-25
r-gensvm public The GenSVM classifier is a generalized multiclass support vector machine (SVM). This classifier aims to find decision boundaries that separate the classes with as wide a margin as possible. In GenSVM, the loss function is very flexible in the way that misclassifications are penalized. This allows the user to tune the classifier to the dataset at hand and potentially obtain higher classification accuracy than alternative multiclass SVMs. Moreover, this flexibility means that GenSVM has a number of other multiclass SVMs as special cases. One of the other advantages of GenSVM is that it is trained in the primal space, allowing the use of warm starts during optimization. This means that for common tasks such as cross validation or repeated model fitting, GenSVM can be trained very quickly. Based on: G.J.J. van den Burg and P.J.F. Groenen (2018) <https://www.jmlr.org/papers/v17/14-526.html>. 2025-03-25
r-gensurv public Generation of survival data with one (binary) time-dependent covariate. Generation of survival data arising from a progressive illness-death model. 2025-03-25
r-gensa public Performs search for global minimum of a very complex non-linear objective function with a very large number of optima. 2025-03-25
r-genodds public Calculates Agresti's generalized odds ratios. For a randomly selected pair of observations from two groups, calculates the odds that the second group will have a higher scoring outcome than that of the first group. Package provides hypothesis testing for if this odds ratio is significantly different to 1 (equal chance). 2025-03-25
r-genlasso public Computes the solution path for generalized lasso problems. Important use cases are the fused lasso over an arbitrary graph, and trend fitting of any given polynomial order. Specialized implementations for the latter two subproblems are given to improve stability and speed. See Taylor Arnold and Ryan Tibshirani (2016) <doi:10.1080/10618600.2015.1008638>. 2025-03-25
r-genkern public Computes generalised KDEs 2025-03-25
r-genie public Includes the reference implementation of Genie - a hierarchical clustering algorithm that links two point groups in such a way that an inequity measure (namely, the Gini index) of the cluster sizes does not significantly increase above a given threshold. This method most often outperforms many other data segmentation approaches in terms of clustering quality as tested on a wide range of benchmark datasets. At the same time, Genie retains the high speed of the single linkage approach, therefore it is also suitable for analysing larger data sets. For more details see (Gagolewski et al. 2016 <DOI:10.1016/j.ins.2016.05.003>). For an even faster and more feature-rich implementation, including, amongst others, noise point detection, see the 'genieclust' package. 2025-03-25
r-genepop public Makes the Genepop software available in R. This software implements a mixture of traditional population genetic methods and some more focused developments: it computes exact tests for Hardy-Weinberg equilibrium, for population differentiation and for genotypic disequilibrium among pairs of loci; it computes estimates of F-statistics, null allele frequencies, allele size-based statistics for microsatellites, etc.; and it performs analyses of isolation by distance from pairwise comparisons of individuals or population samples. 2025-03-25
r-genepi public Package for Genetic Epidemiologic Methods Developed at MSKCC. It contains functions to calculate haplotype specific odds ratio and the power of two stage design for GWAS studies. 2025-03-25
r-gelnet public Implements several extensions of the elastic net regularization scheme. These extensions include individual feature penalties for the L1 term, feature-feature penalties for the L2 term, as well as translation coefficients for the latter. 2025-03-25
r-geigen public Functions to compute generalized eigenvalues and eigenvectors, the generalized Schur decomposition and the generalized Singular Value Decomposition of a matrix pair, using Lapack routines. 2025-03-25
r-geepack public Generalized estimating equations solver for parameters in mean, scale, and correlation structures, through mean link, scale link, and correlation link. Can also handle clustered categorical responses. See e.g. Halekoh and Højsgaard, (2005, <doi:10.18637/jss.v015.i02>), for details. 2025-03-25
r-gee public Generalized Estimation Equation solver. 2025-03-25
r-gee4 public Fit joint mean-covariance models for longitudinal data within the framework of (weighted) generalised estimating equations (GEE/WGEE). The models and their components are represented using S4 classes and methods. The core computational algorithms are implemented using the 'Armadillo' C++ library for numerical linear algebra and 'RcppArmadillo' glue. 2025-03-25
r-gdpc public Functions to compute the Generalized Dynamic Principal Components introduced in Peña and Yohai (2016) <DOI:10.1080/01621459.2015.1072542>. The implementation includes an automatic procedure proposed in Peña, Smucler and Yohai (2020) <DOI:10.18637/jss.v092.c02> for the identification of both the number of lags to be used in the generalized dynamic principal components as well as the number of components required for a given reconstruction accuracy. 2025-03-25
r-gdmp public Manage and analyze high-dimensional SNP data from chips with multiple densities. 2025-03-25
r-gcpm public Analyze the default risk of credit portfolios. Commonly known models, like CreditRisk+ or the CreditMetrics model are implemented in their very basic settings. The portfolio loss distribution can be achieved either by simulation or analytically in case of the classic CreditRisk+ model. Models are only implemented to respect losses caused by defaults, i.e. migration risk is not included. The package structure is kept flexible especially with respect to distributional assumptions in order to quantify the sensitivity of risk figures with respect to several assumptions. Therefore the package can be used to determine the credit risk of a given portfolio as well as to quantify model sensitivities. 2025-03-25
r-gconcord public Estimates a sparse inverse covariance matrix from a convex pseudo-likelihood function with L1 penalty 2025-03-25
r-gckrig public Provides a variety of functions to analyze and model geostatistical count data with Gaussian copulas, including 1) data simulation and visualization; 2) correlation structure assessment (here also known as the Normal To Anything); 3) calculate multivariate normal rectangle probabilities; 4) likelihood inference and parallel prediction at predictive locations. Description of the method is available from: Han and DeOliveira (2018) <doi:10.18637/jss.v087.i13>. 2025-03-25
r-gcdnet public Implements a generalized coordinate descent (GCD) algorithm for computing the solution paths of the hybrid Huberized support vector machine (HHSVM) and its generalizations. Supported models include the (adaptive) LASSO and elastic net penalized least squares, logistic regression, HHSVM, squared hinge loss SVM and expectile regression. 2025-03-25
r-gcat public These are two-sample tests for categorical data utilizing similarity information among the categories. They are useful when there is underlying structure on the categories. 2025-03-25
r-gbm public An implementation of extensions to Freund and Schapire's AdaBoost algorithm and Friedman's gradient boosting machine. Includes regression methods for least squares, absolute loss, t-distribution loss, quantile regression, logistic, multinomial logistic, Poisson, Cox proportional hazards partial likelihood, AdaBoost exponential loss, Huberized hinge loss, and Learning to Rank measures (LambdaMart). Originally developed by Greg Ridgeway. 2025-03-25
r-gb public A collection of algorithms and functions for fitting data to a generalized lambda distribution via moment matching methods, and generalized bootstrapping. 2025-03-25
r-gausscov public Given the standard linear model the traditional way of deciding whether to include the jth covariate is to apply the F-test to decide whether the corresponding beta coefficient is zero. The Gaussian covariate method is completely different. The question as to whether the beta coefficient is or is not zero is replaced by the question as to whether the covariate is better or worse than i.i.d. Gaussian noise. The P-value for the covariate is the probability that Gaussian noise is better. Surprisingly this can be given exactly and it is the same a the P-value for the classical model based on the F-distribution. The Gaussian covariate P-value is model free, it is the same for any data set. Using the idea it is possible to do covariate selection for a small number of covariates 25 by considering all subsets. Post selection inference causes no problems as the P-values hold whatever the data. The idea extends to stepwise regression again with exact probabilities. In the simplest version the only parameter is a specified cut-off P-value which can be interpreted as the probability of a false positive being included in the final selection. For more information see the web site below and the accompanying papers: L. Davies and L. Duembgen, "Covariate Selection Based on a Model-free Approach to Linear Regression with Exact Probabilities", 2022, <arxiv:2202.01553>. L. Davies, "Linear Regression, Covariate Selection and the Failure of Modelling", 2022, <arXiv:2112.08738>. 2025-03-25
r-gaselect public Provides a genetic algorithm for finding variable subsets in high dimensional data with high prediction performance. The genetic algorithm can use ordinary least squares (OLS) regression models or partial least squares (PLS) regression models to evaluate the prediction power of variable subsets. By supporting different cross-validation schemes, the user can fine-tune the tradeoff between speed and quality of the solution. 2025-03-25
r-gap public As first reported [Zhao, J. H. 2007. "gap: Genetic Analysis Package". J Stat Soft 23(8):1-18. <doi:10.18637/jss.v023.i08>], it is designed as an integrated package for genetic data analysis of both population and family data. Currently, it contains functions for sample size calculations of both population-based and family-based designs, probability of familial disease aggregation, kinship calculation, statistics in linkage analysis, and association analysis involving genetic markers including haplotype analysis with or without environmental covariates. Over years, the package has been developed in-between many projects hence also in line with the name (gap). 2025-03-25
r-gammslice public Uses a slice sampling-based Markov chain Monte Carlo to conduct Bayesian fitting and inference for generalized additive mixed models. Generalized linear mixed models and generalized additive models are also handled as special cases of generalized additive mixed models. The methodology and software is described in Pham, T.H. and Wand, M.P. (2018). Australian and New Zealand Journal of Statistics, 60, 279-330 <DOI:10.1111/ANZS.12241>. 2025-03-25
r-gamlss.dist public A set of distributions which can be used for modelling the response variables in Generalized Additive Models for Location Scale and Shape, Rigby and Stasinopoulos (2005), <doi:10.1111/j.1467-9876.2005.00510.x>. The distributions can be continuous, discrete or mixed distributions. Extra distributions can be created, by transforming, any continuous distribution defined on the real line, to a distribution defined on ranges 0 to infinity or 0 to 1, by using a 'log' or a 'logit' transformation respectively. 2025-03-25
r-gamlr public The gamma lasso algorithm provides regularization paths corresponding to a range of non-convex cost functions between L0 and L1 norms. As much as possible, usage for this package is analogous to that for the glmnet package (which does the same thing for penalization between L1 and L2 norms). For details see: Taddy (2017 JCGS), 'One-Step Estimator Paths for Concave Regularization', <arXiv:1308.5623>. 2025-03-25
r-gamesga public Finds adaptive strategies for sequential symmetric games using a genetic algorithm. Currently, any symmetric two by two matrix is allowed, and strategies can remember the history of an opponent's play from the previous three rounds of moves in iterated interactions between players. The genetic algorithm returns a list of adaptive strategies given payoffs, and the mean fitness of strategies in each generation. 2025-03-25
r-gamboost public This package provides routines for fitting generalized linear and and generalized additive models by likelihood based boosting, using penalized B-splines 2025-03-25
r-gam public Functions for fitting and working with generalized additive models, as described in chapter 7 of "Statistical Models in S" (Chambers and Hastie (eds), 1991), and "Generalized Additive Models" (Hastie and Tibshirani, 1990). 2025-03-25
r-galgo public Build multivariate predictive models from large datasets having far larger number of features than samples such as in functional genomics datasets. Trevino and Falciani (2006) <doi:10.1093/bioinformatics/btl074>. 2025-03-25
r-gafit public A group of sample points are evaluated against a user-defined expression, the sample points are lists of parameters with values that may be substituted into that expression. The genetic algorithm attempts to make the result of the expression as low as possible (usually this would be the sum of residuals squared). 2025-03-25
r-gadag public Sparse large Directed Acyclic Graphs learning with a combination of a convex program and a tailored genetic algorithm (see Champion et al. (2017) <https://hal.archives-ouvertes.fr/hal-01172745v2/document>). 2025-03-25
r-ga public Flexible general-purpose toolbox implementing genetic algorithms (GAs) for stochastic optimisation. Binary, real-valued, and permutation representations are available to optimize a fitness function, i.e. a function provided by users depending on their objective function. Several genetic operators are available and can be combined to explore the best settings for the current task. Furthermore, users can define new genetic operators and easily evaluate their performances. Local search using general-purpose optimisation algorithms can be applied stochastically to exploit interesting regions. GAs can be run sequentially or in parallel, using an explicit master-slave parallelisation or a coarse-grain islands approach. 2025-03-25
r-fwsim public Simulates a population under the Fisher-Wright model (fixed or stochastic population size) with a one-step neutral mutation process (stepwise mutation model, logistic mutation model and exponential mutation model supported). The stochastic population sizes are random Poisson distributed and different kinds of population growth are supported. For the stepwise mutation model, it is possible to specify locus and direction specific mutation rate (in terms of upwards and downwards mutation rate). Intermediate generations can be saved in order to study e.g. drift. 2025-03-25
r-fuzzyranktests public Does fuzzy tests and confidence intervals (following Geyer and Meeden, Statistical Science, 2005, <doi:10.1214/088342305000000340>) for sign test and Wilcoxon signed rank and rank sum tests. 2025-03-25
r-funitroots public Provides four addons for analyzing trends and unit roots in financial time series: (i) functions for the density and probability of the augmented Dickey-Fuller Test, (ii) functions for the density and probability of MacKinnon's unit root test statistics, (iii) reimplementations for the ADF and MacKinnon Test, and (iv) an 'urca' Unit Root Test Interface for Pfaff's unit root test suite. 2025-03-25
r-funchisq public Statistical hypothesis testing methods for inferring model-free functional dependency using asymptotic chi-squared or exact distributions. Functional test statistics are asymmetric and functionally optimal, unique from other related statistics. Tests in this package reveal evidence for causality based on the causality-by- functionality principle. They include asymptotic functional chi-squared tests (Zhang & Song 2013) <arXiv:1311.2707>, an adapted functional chi-squared test (Kumar & Song 2022) <doi:10.1093/bioinformatics/btac206>, and an exact functional test (Zhong & Song 2019) <doi:10.1109/TCBB.2018.2809743> (Nguyen et al. 2020) <doi:10.24963/ijcai.2020/372>. The normalized functional chi-squared test was used by Best Performer 'NMSUSongLab' in HPN-DREAM (DREAM8) Breast Cancer Network Inference Challenges (Hill et al. 2016) <doi:10.1038/nmeth.3773>. A function index (Zhong & Song 2019) <doi:10.1186/s12920-019-0565-9> (Kumar et al. 2018) <doi:10.1109/BIBM.2018.8621502> derived from the functional test statistic offers a new effect size measure for the strength of functional dependency, a better alternative to conditional entropy in many aspects. For continuous data, these tests offer an advantage over regression analysis when a parametric functional form cannot be assumed; for categorical data, they provide a novel means to assess directional dependency not possible with symmetrical Pearson's chi-squared or Fisher's exact tests. 2025-03-25
r-fts public Fast operations for time series objects. 2025-03-25
r-ftnonpar public The package contains R-functions to perform the methods in nonparametric regression and density estimation, described in Davies, P. L. and Kovac, A. (2001) Local Extremes, Runs, Strings and Multiresolution (with discussion) Annals of Statistics. 29. p1-65 Davies, P. L. and Kovac, A. (2004) Densities, Spectral Densities and Modality Annals of Statistics. Annals of Statistics. 32. p1093-1136 Kovac, A. (2006) Smooth functions and local extreme values. Computational Statistics and Data Analysis (to appear) D\"umbgen, L. and Kovac, A. (2006) Extensions of smoothing via taut strings Davies, P. L. (1995) Data features. Statistica Neerlandica 49,185-245. 2025-03-25
r-fst public Multithreaded serialization of compressed data frames using the 'fst' format. The 'fst' format allows for full random access of stored data and a wide range of compression settings using the LZ4 and ZSTD compressors. 2025-03-25
r-fsinteract public Performs fast detection of interactions in large-scale data using the method of random intersection trees introduced in Shah, R. D. and Meinshausen, N. (2014) <http://www.jmlr.org/papers/v15/shah14a.html>. The algorithm finds potentially high-order interactions in high-dimensional binary two-class classification data, without requiring lower order interactions to be informative. The search is particularly fast when the matrices of predictors are sparse. It can also be used to perform market basket analysis when supplied with a single binary data matrix. Here it will find collections of columns which for many rows contain all 1's. 2025-03-25
r-fselectorrcpp public 'Rcpp' (free of 'Java'/'Weka') implementation of 'FSelector' entropy-based feature selection algorithms based on an MDL discretization (Fayyad U. M., Irani K. B.: Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. In 13'th International Joint Conference on Uncertainly in Artificial Intelligence (IJCAI93), pages 1022-1029, Chambery, France, 1993.) <https://www.ijcai.org/Proceedings/93-2/Papers/022.pdf> with a sparse matrix support. 2025-03-25
r-fromo public Fast, numerically robust computation of weighted moments via 'Rcpp'. Supports computation on vectors and matrices, and Monoidal append of moments. Moments and cumulants over running fixed length windows can be computed, as well as over time-based windows. Moment computations are via a generalization of Welford's method, as described by Bennett et. (2009) <doi:10.1109/CLUSTR.2009.5289161>. 2025-03-25
r-frlr public When fitting a set of linear regressions which have some same variables, we can separate the matrix and reduce the computation cost. This package aims to fit a set of repeated linear regressions faster. More details can be found in this blog Lijun Wang (2017) <https://stats.hohoweiya.xyz/regression/2017/09/26/An-R-Package-Fit-Repeated-Linear-Regressions/>. 2025-03-25

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.9) Legal | Privacy Policy