r-rexperigen
|
public |
Provides convenience functions to communicate with an Experigen server: Experigen (<http://github.com/aquincum/experigen>) is an online framework for creating linguistic experiments, and it stores the results on a dedicated server. This package can be used to retrieve the results from the server, and it is especially helpful with registered experiments, as authentication with the server has to happen.
|
2025-03-25 |
r-retimes
|
public |
Reaction time analysis by maximum likelihood
|
2025-03-25 |
r-restrictedmvn
|
public |
A fast Gibbs sampler for multivariate normal with affine constraints.
|
2025-03-25 |
r-resemble
|
public |
Functions for dissimilarity analysis and memory-based learning (MBL, a.k.a local modeling) in complex spectral data sets. Most of these functions are based on the methods presented in Ramirez-Lopez et al. (2013) <doi:10.1016/j.geoderma.2012.12.014>.
|
2025-03-25 |
r-repolr
|
public |
Fits linear models to repeated ordinal scores using GEE methodology.
|
2025-03-25 |
r-repfdr
|
public |
Estimation of Bayes and local Bayes false discovery rates for replicability analysis (Heller & Yekutieli, 2014 <doi:10.1214/13-AOAS697> ; Heller at al., 2015 <doi: 10.1093/bioinformatics/btu434>).
|
2025-03-25 |
r-reordercluster
|
public |
Tools for performing the leaf reordering for the dendrogram that preserves the hierarchical clustering result and at the same time tries to group instances from the same class together.
|
2025-03-25 |
r-remmap
|
public |
remMap is developed for fitting multivariate response regression models under the high-dimension-low-sample-size setting
|
2025-03-25 |
r-rem
|
public |
Calculate endogenous network effects in event sequences and fit relational event models (REM): Using network event sequences (where each tie between a sender and a target in a network is time-stamped), REMs can measure how networks form and evolve over time. Endogenous patterns such as popularity effects, inertia, similarities, cycles or triads can be calculated and analyzed over time.
|
2025-03-25 |
r-relsurv
|
public |
Contains functions for analysing relative survival data, including nonparametric estimators of net (marginal relative) survival, relative survival ratio, crude mortality, methods for fitting and checking additive and multiplicative regression models, transformation approach, methods for dealing with population mortality tables. Work has been described in Pohar Perme, Pavlic (2018) <doi:10.18637/jss.v087.i08>.
|
2025-03-25 |
r-relatedness
|
public |
Inference of relatedness coefficients from a bi-allelic genotype matrix using a Maximum Likelihood estimation, Laporte, F., Charcosset, A. and Mary-Huard, T. (2017) <doi:10.1111/biom.12634>.
|
2025-03-25 |
r-reins
|
public |
Functions from the book "Reinsurance: Actuarial and Statistical Aspects" (2017) by Hansjoerg Albrecher, Jan Beirlant and Jef Teugels <https://www.wiley.com/en-us/Reinsurance%3A+Actuarial+and+Statistical+Aspects-p-9780470772683>.
|
2025-03-25 |
r-regnet
|
public |
Network-based regularization has achieved success in variable selection for high-dimensional biological data due to its ability to incorporate correlations among genomic features. This package provides procedures of network-based variable selection for generalized linear models (Ren et al. (2017) <doi:10.1186/s12863-017-0495-5> and Ren et al.(2019) <doi:10.1002/gepi.22194>). Continuous, binary, and survival response are supported. Robust network-based methods are available for continuous and survival responses.
|
2025-03-25 |
r-reglogit
|
public |
Regularized (polychotomous) logistic regression by Gibbs sampling. The package implements subtly different MCMC schemes with varying efficiency depending on the data type (binary v. binomial, say) and the desired estimator (regularized maximum likelihood, or Bayesian maximum a posteriori/posterior mean, etc.) through a unified interface. For details, see Gramacy & Polson (2012 <doi:10.1214/12-BA719>).
|
2025-03-25 |
r-refinr
|
public |
These functions take a character vector as input, identify and cluster similar values, and then merge clusters together so their values become identical. The functions are an implementation of the key collision and ngram fingerprint algorithms from the open source tool Open Refine <https://openrefine.org/>. More info on key collision and ngram fingerprint can be found here <https://docs.openrefine.org/next/technical-reference/clustering-in-depth/>.
|
2025-03-25 |
r-redm
|
public |
An implementation of 'EDM' algorithms based on research software developed for internal use at the Sugihara Lab ('UCSD/SIO'). The package is implemented with 'Rcpp' wrappers around the 'cppEDM' library. It implements the 'simplex' projection method from Sugihara & May (1990) <doi:10.1038/344734a0>, the 'S-map' algorithm from Sugihara (1994) <doi:10.1098/rsta.1994.0106>, convergent cross mapping described in Sugihara et al. (2012) <doi:10.1126/science.1227079>, and, 'multiview embedding' described in Ye & Sugihara (2016) <doi:10.1126/science.aag0863>.
|
2025-03-25 |
r-recurse
|
public |
Computes revisitation metrics for trajectory data, such as the number of revisitations for each location as well as the time spent for that visit and the time since the previous visit. Also includes functions to plot data.
|
2025-03-25 |
r-recosystem
|
public |
R wrapper of the 'libmf' library <https://www.csie.ntu.edu.tw/~cjlin/libmf/> for recommender system using matrix factorization. It is typically used to approximate an incomplete matrix using the product of two matrices in a latent space. Other common names for this task include "collaborative filtering", "matrix completion", "matrix recovery", etc. High performance multi-core parallel computing is supported in this package.
|
2025-03-25 |
r-reconstructr
|
public |
Functions to reconstruct sessions from web log or other user trace data and calculate various metrics around them, producing tabular, output that is compatible with 'dplyr' or 'data.table' centered processes.
|
2025-03-25 |
r-rebmix
|
public |
Random univariate and multivariate finite mixture model generation, estimation, clustering, latent class analysis and classification. Variables can be continuous, discrete, independent or dependent and may follow normal, lognormal, Weibull, gamma, Gumbel, binomial, Poisson, Dirac, uniform or circular von Mises parametric families.
|
2025-03-25 |
r-realvams
|
public |
Fits a multivariate value-added model (VAM), see Broatch, Green, and Karl (2018) <doi:10.32614/RJ-2018-033> and Broatch and Lohr (2012) <doi:10.3102/1076998610396900>, with normally distributed test scores and a binary outcome indicator. A pseudo-likelihood approach, Wolfinger (1993) <doi:10.1080/00949659308811554>, is used for the estimation of this joint generalized linear mixed model. The inner loop of the pseudo-likelihood routine (estimation of a linear mixed model) occurs in the framework of the EM algorithm presented by Karl, Yang, and Lohr (2013) <DOI:10.1016/j.csda.2012.10.004>. This material is based upon work supported by the National Science Foundation under grants DRL-1336027 and DRL-1336265.
|
2025-03-25 |
r-gifski
|
public |
Multi-threaded GIF encoder written in Rust: <https://gif.ski/>. Converts images to GIF animations using pngquant's efficient cross-frame palettes and temporal dithering with thousands of colors per frame.
|
2025-03-25 |
r-glmpath
|
public |
A path-following algorithm for L1 regularized generalized linear models and Cox proportional hazards model.
|
2025-03-25 |
r-glmmsr
|
public |
Conduct inference about generalized linear mixed models, with a choice about which method to use to approximate the likelihood. In addition to the Laplace and adaptive Gaussian quadrature approximations, which are borrowed from 'lme4', the likelihood may be approximated by the sequential reduction approximation, or an importance sampling approximation. These methods provide an accurate approximation to the likelihood in some situations where it is not possible to use adaptive Gaussian quadrature.
|
2025-03-25 |
r-glmmml
|
public |
Binomial and Poisson regression for clustered data, fixed and random effects with bootstrapping.
|
2025-03-25 |
r-glmlep
|
public |
Efficient algorithms for fitting regularization paths for linear or logistic regression models penalized by LEP.
|
2025-03-25 |
r-glmgraph
|
public |
We propose to use sparse regression model to achieve variable selection while accounting for graph-constraints among coefficients. Different linear combination of a sparsity penalty(L1) and a smoothness(MCP) penalty has been used, which induces both sparsity of the solution and certain smoothness on the linear coefficients.
|
2025-03-25 |
r-glm.deploy
|
public |
Provides two functions that generate source code implementing the predict function of fitted glm objects. In this version, code can be generated for either 'C' or 'Java'. The idea is to provide a tool for the easy and fast deployment of glm predictive models into production. The source code generated by this package implements two function/methods. One of such functions implements the equivalent to predict(type="response"), while the second implements predict(type="link"). Source code is written to disk as a .c or .java file in the specified path. In the case of c, an .h file is also generated.
|
2025-03-25 |
r-glmaspu
|
public |
Several tests for high dimensional generalized linear models have been proposed recently. In this package, we implemented a new test called adaptive sum of powered score (aSPU) for high dimensional generalized linear models, which is often more powerful than the existing methods in a wide scenarios. We also implemented permutation based version of several existing methods for research purpose. We recommend users use the aSPU test for their real testing problem. You can learn more about the tests implemented in the package via the following papers: 1. Pan, W., Kim, J., Zhang, Y., Shen, X. and Wei, P. (2014) <DOI:10.1534/genetics.114.165035> A powerful and adaptive association test for rare variants, Genetics, 197(4). 2. Guo, B., and Chen, S. X. (2016) <DOI:10.1111/rssb.12152>. Tests for high dimensional generalized linear models. Journal of the Royal Statistical Society: Series B. 3. Goeman, J. J., Van Houwelingen, H. C., and Finos, L. (2011) <DOI:10.1093/biomet/asr016>. Testing against a high-dimensional alternative in the generalized linear model: asymptotic type I error control. Biometrika, 98(2).
|
2025-03-25 |
r-gllm
|
public |
Routines for log-linear models of incomplete contingency tables, including some latent class models, via EM and Fisher scoring approaches. Allows bootstrapping. See Espeland and Hui (1987) <doi:10.2307/2531553> for general approach.
|
2025-03-25 |
r-glinternet
|
public |
Group-Lasso INTERaction-NET. Fits linear pairwise-interaction models that satisfy strong hierarchy: if an interaction coefficient is estimated to be nonzero, then its two associated main effects also have nonzero estimated coefficients. Accommodates categorical variables (factors) with arbitrary numbers of levels, continuous variables, and combinations thereof. Implements the machinery described in the paper "Learning interactions via hierarchical group-lasso regularization" (JCGS 2015, Volume 24, Issue 3). Michael Lim & Trevor Hastie (2015) <DOI:10.1080/10618600.2014.938812>.
|
2025-03-25 |
r-glide
|
public |
Global and individual tests for pleiotropy and direct effects in Mendelian randomization studies. Refer to J. Y. Dai, U. Peters, X. Wang, J. Kocarnik et al. AJE (2018) <doi:10.1093/aje/kwy177>.
|
2025-03-25 |
r-gldex
|
public |
The fitting algorithms considered in this package have two major objectives. One is to provide a smoothing device to fit distributions to data using the weight and unweighted discretised approach based on the bin width of the histogram. The other is to provide a definitive fit to the data set using the maximum likelihood and quantile matching estimation. Other methods such as moment matching, starship method, L moment matching are also provided. Diagnostics on goodness of fit can be done via qqplots, KS-resample tests and comparing mean, variance, skewness and kurtosis of the data with the fitted distribution. References include the following: Karvanen and Nuutinen (2008) "Characterizing the generalized lambda distribution by L-moments" <doi:10.1016/j.csda.2007.06.021>, King and MacGillivray (1999) "A starship method for fitting the generalised lambda distributions" <doi:10.1111/1467-842X.00089>, Su (2005) "A Discretized Approach to Flexibly Fit Generalized Lambda Distributions to Data" <doi:10.22237/jmasm/1130803560>, Su (2007) "Nmerical Maximum Log Likelihood Estimation for Generalized Lambda Distributions" <doi:10.1016/j.csda.2006.06.008>, Su (2007) "Fitting Single and Mixture of Generalized Lambda Distributions to Data via Discretized and Maximum Likelihood Methods: GLDEX in R" <doi:10.18637/jss.v021.i09>, Su (2009) "Confidence Intervals for Quantiles Using Generalized Lambda Distributions" <doi:10.1016/j.csda.2009.02.014>, Su (2010) "Chapter 14: Fitting GLDs and Mixture of GLDs to Data using Quantile Matching Method" <doi:10.1201/b10159>, Su (2010) "Chapter 15: Fitting GLD to data using GLDEX 1.0.4 in R" <doi:10.1201/b10159>, Su (2015) "Flexible Parametric Quantile Regression Model" <doi:10.1007/s11222-014-9457-1>, Su (2021) "Flexible parametric accelerated failure time model"<doi:10.1080/10543406.2021.1934854>.
|
2025-03-25 |
r-glcm
|
public |
Enables calculation of image textures (Haralick 1973) <doi:10.1109/TSMC.1973.4309314> from grey-level co-occurrence matrices (GLCMs). Supports processing images that cannot fit in memory.
|
2025-03-25 |
r-glassofast
|
public |
A fast and improved implementation of the graphical LASSO.
|
2025-03-25 |
r-glasso
|
public |
Estimation of a sparse inverse covariance matrix using a lasso (L1) penalty. Facilities are provided for estimates along a path of values for the regularization parameter.
|
2025-03-25 |
r-glamlasso
|
public |
Efficient design matrix free lasso penalized estimation in large scale 2 and 3-dimensional generalized linear array model framework. The procedure is based on the gdpg algorithm from Lund et al. (2017) <doi:10.1080/10618600.2017.1279548>. Currently Lasso or Smoothly Clipped Absolute Deviation (SCAD) penalized estimation is possible for the following models: The Gaussian model with identity link, the Binomial model with logit link, the Poisson model with log link and the Gamma model with log link. It is also possible to include a component in the model with non-tensor design e.g an intercept. Also provided are functions, glamlassoRR() and glamlassoS(), fitting special cases of GLAMs.
|
2025-03-25 |
r-giraf
|
public |
Allows calculation on, and sampling from Gibbs Random Fields, and more precisely general homogeneous Potts model. The primary tool is the exact computation of the intractable normalising constant for small rectangular lattices. Beside the latter function, it contains method that give exact sample from the likelihood for small enough rectangular lattices or approximate sample from the likelihood using MCMC samplers for large lattices.
|
2025-03-25 |
r-gigrvg
|
public |
Generator and density function for the Generalized Inverse Gaussian (GIG) distribution.
|
2025-03-25 |
r-gifi
|
public |
Implements categorical principal component analysis ('PRINCALS'), multiple correspondence analysis ('HOMALS'), monotone regression analysis ('MORALS'). It replaces the 'homals' package.
|
2025-03-25 |
r-ghyp
|
public |
Detailed functionality for working with the univariate and multivariate Generalized Hyperbolic distribution and its special cases (Hyperbolic (hyp), Normal Inverse Gaussian (NIG), Variance Gamma (VG), skewed Student-t and Gaussian distribution). Especially, it contains fitting procedures, an AIC-based model selection routine, and functions for the computation of density, quantile, probability, random variates, expected shortfall and some portfolio optimization and plotting routines as well as the likelihood ratio test. In addition, it contains the Generalized Inverse Gaussian distribution. See Chapter 3 of A. J. McNeil, R. Frey, and P. Embrechts. Quantitative risk management: Concepts, techniques and tools. Princeton University Press, Princeton (2005).
|
2025-03-25 |
r-ggmselect
|
public |
Graph estimation in Gaussian Graphical Models, following the method developed by C. Giraud, S. Huet and N. Verzelen (2012) <doi:10.1515/1544-6115.1625>. The main functions return the adjacency matrix of an undirected graph estimated from a data matrix.
|
2025-03-25 |
r-gglasso
|
public |
A unified algorithm, blockwise-majorization-descent (BMD), for efficiently computing the solution paths of the group-lasso penalized least squares, logistic regression, Huberized SVM and squared SVM. The package is an implementation of Yang, Y. and Zou, H. (2015) DOI: <doi:10.1007/s11222-014-9498-5>.
|
2025-03-25 |
r-gforce
|
public |
A complete suite of computationally efficient methods for high dimensional clustering and inference problems in G-Latent Models (a type of Latent Variable Gaussian graphical model). The main feature is the FORCE (First-Order, Certifiable, Efficient) clustering algorithm which is a fast solver for a semi-definite programming (SDP) relaxation of the K-means problem. For certain types of graphical models (G-Latent Models), with high probability the algorithm not only finds the optimal clustering, but produces a certificate of having done so. This certificate, however, is model independent and so can also be used to certify data clustering problems. The 'GFORCE' package also contains implementations of inferential procedures for G-Latent graphical models using n-fold cross validation. Also included are native code implementations of other popular clustering methods such as Lloyd's algorithm with kmeans++ initialization and complete linkage hierarchical clustering. The FORCE method is due to Eisenach and Liu (2019) <arxiv:1806.00530>.
|
2025-03-25 |
r-gettz
|
public |
A function to retrieve the system timezone on Unix systems which has been found to find an answer when 'Sys.timezone()' has failed. It is based on an answer by Duane McCully posted on 'StackOverflow', and adapted to be callable from R. The package also builds on Windows, but just returns NULL.
|
2025-03-25 |
r-getpass
|
public |
A micro-package for reading "passwords", i.e. reading user input with masking, so that the input is not displayed as it is typed. Currently we have support for 'RStudio', the command line (every OS), and any platform where 'tcltk' is present.
|
2025-03-25 |
r-geostatsp
|
public |
Geostatistical modelling facilities using 'SpatRaster' and 'SpatVector' objects are provided. Non-Gaussian models are fit using 'INLA', and Gaussian geostatistical models use Maximum Likelihood Estimation. For details see Brown (2015) <doi:10.18637/jss.v063.i12>. The 'RandomFields' package is available at <https://www.wim.uni-mannheim.de/schlather/publications/software>.
|
2025-03-25 |
r-geosphere
|
public |
Spherical trigonometry for geographic applications. That is, compute distances and related measures for angular (longitude/latitude) locations.
|
2025-03-25 |
r-geoops
|
public |
Tools for doing calculations and manipulations on 'GeoJSON', a 'geospatial' data interchange format (<https://tools.ietf.org/html/rfc7946>). 'GeoJSON' is also valid 'JSON'.
|
2025-03-25 |
r-geojsonr
|
public |
Includes functions for processing GeoJson objects <https://en.wikipedia.org/wiki/GeoJSON> relying on 'RFC 7946' <https://datatracker.ietf.org/doc/pdf/rfc7946.pdf>. The geojson encoding is based on 'json11', a tiny JSON library for 'C++11' <https://github.com/dropbox/json11>. Furthermore, the source code is exported in R through the 'Rcpp' and 'RcppArmadillo' packages.
|
2025-03-25 |