About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-densestbayes public Bayesian density estimates for univariate continuous random samples are provided using the Bayesian inference engine paradigm. The engine options are: Hamiltonian Monte Carlo, the no U-turn sampler, semiparametric mean field variational Bayes and slice sampling. The methodology is described in Wand and Yu (2020) <arXiv:2009.06182>. 2025-04-22
r-dendser public Re-arranges a dendrogram to optimize visualisation-based cost functions. 2025-04-22
r-densityclust public An improved implementation (based on k-nearest neighbors) of the density peak clustering algorithm, originally described by Alex Rodriguez and Alessandro Laio (Science, 2014 vol. 344) <DOI: 10.1126/science.1242072>. It can handle large datasets (> 100, 000 samples) very efficiently. It was initially implemented by Thomas Lin Pedersen, with inputs from Sean Hughes and later improved by Xiaojie Qiu to handle large datasets with kNNs. 2025-04-22
r-ddd public Implements maximum likelihood and bootstrap methods based on the diversity-dependent birth-death process to test whether speciation or extinction are diversity-dependent, under various models including various types of key innovations. See Etienne et al. 2012, Proc. Roy. Soc. B 279: 1300-1309, <DOI:10.1098/rspb.2011.1439>, Etienne & Haegeman 2012, Am. Nat. 180: E75-E89, <DOI:10.1086/667574>, Etienne et al. 2016. Meth. Ecol. Evol. 7: 1092-1099, <DOI:10.1111/2041-210X.12565> and Laudanno et al. 2021. Syst. Biol. 70: 389–407, <DOI:10.1093/sysbio/syaa048>. Also contains functions to simulate the diversity-dependent process. 2025-04-22
r-decor public Retrieves code comment decorations for C++ languages of the form '\\ [[xyz]]', which are used for automated wrapping of C++ functions. 2025-04-22
r-dcluster public A set of functions for the detection of spatial clusters of disease using count data. Bootstrap is used to estimate sampling distributions of statistics. 2025-04-22
r-datavisualizations public Gives access to data visualisation methods that are relevant from the data scientist's point of view. The flagship idea of 'DataVisualizations' is the mirrored density plot (MD-plot) for either classified or non-classified multivariate data published in Thrun, M.C. et al.: "Analyzing the Fine Structure of Distributions" (2020), PLoS ONE, <DOI:10.1371/journal.pone.0238835>. The MD-plot outperforms the box-and-whisker diagram (box plot), violin plot and bean plot and geom_violin plot of ggplot2. Furthermore, a collection of various visualization methods for univariate data is provided. In the case of exploratory data analysis, 'DataVisualizations' makes it possible to inspect the distribution of each feature of a dataset visually through a combination of four methods. One of these methods is the Pareto density estimation (PDE) of the probability density function (pdf). Additionally, visualizations of the distribution of distances using PDE, the scatter-density plot using PDE for two variables as well as the Shepard density plot and the Bland-Altman plot are presented here. Pertaining to classified high-dimensional data, a number of visualizations are described, such as f.ex. the heat map and silhouette plot. A political map of the world or Germany can be visualized with the additional information defined by a classification of countries or regions. By extending the political map further, an uncomplicated function for a Choropleth map can be used which is useful for measurements across a geographic area. For categorical features, the Pie charts, slope charts and fan plots, improved by the ABC analysis, become usable. More detailed explanations are found in the book by Thrun, M.C.: "Projection-Based Clustering through Self-Organization and Swarm Intelligence" (2018) <DOI:10.1007/978-3-658-20540-9>. 2025-04-22
r-dbarts public Fits Bayesian additive regression trees (BART; Chipman, George, and McCulloch (2010) <doi:10.1214/09-AOAS285>) while allowing the updating of predictors or response so that BART can be incorporated as a conditional model in a Gibbs/Metropolis-Hastings sampler. Also serves as a drop-in replacement for package 'BayesTree'. 2025-04-22
r-cyclops public This model fitting tool incorporates cyclic coordinate descent and majorization-minimization approaches to fit a variety of regression models found in large-scale observational healthcare data. Implementations focus on computational optimization and fine-scale parallelization to yield efficient inference in massive datasets. Please see: Suchard, Simpson, Zorych, Ryan and Madigan (2013) <doi:10.1145/2414416.2414791>. 2025-04-22
r-cvxr public An object-oriented modeling language for disciplined convex programming (DCP) as described in Fu, Narasimhan, and Boyd (2020, <doi:10.18637/jss.v094.i14>). It allows the user to formulate convex optimization problems in a natural way following mathematical convention and DCP rules. The system analyzes the problem, verifies its convexity, converts it into a canonical form, and hands it off to an appropriate solver to obtain the solution. Interfaces to solvers on CRAN and elsewhere are provided, both commercial and open source. 2025-04-22
r-cutpointr public Estimate cutpoints that optimize a specified metric in binary classification tasks and validate performance using bootstrapping. Some methods for more robust cutpoint estimation are supported, e.g. a parametric method assuming normal distributions, bootstrapped cutpoints, and smoothing of the metric values per cutpoint using Generalized Additive Models. Various plotting functions are included. For an overview of the package see Thiele and Hirschfeld (2021) <doi:10.18637/jss.v098.i11>. 2025-04-22
r-ctsem public Hierarchical continuous (and discrete) time state space modelling, for linear and nonlinear systems measured by continuous variables, with limited support for binary data. The subject specific dynamic system is modelled as a stochastic differential equation (SDE) or difference equation, measurement models are typically multivariate normal factor models. Linear mixed effects SDE's estimated via maximum likelihood and optimization are the default. Nonlinearities, (state dependent parameters) and random effects on all parameters are possible, using either max likelihood / max a posteriori optimization (with optional importance sampling) or Stan's Hamiltonian Monte Carlo sampling. See <https://github.com/cdriveraus/ctsem/raw/master/vignettes/hierarchicalmanual.pdf> for details. Priors may be used. For the conceptual overview of the hierarchical Bayesian linear SDE approach, see <https://www.researchgate.net/publication/324093594_Hierarchical_Bayesian_Continuous_Time_Dynamic_Modeling>. Exogenous inputs may also be included, for an overview of such possibilities see <https://www.researchgate.net/publication/328221807_Understanding_the_Time_Course_of_Interventions_with_Continuous_Time_Dynamic_Models> . Stan based functions are not available on 32 bit Windows systems at present. <https://cdriver.netlify.app/> contains some tutorial blog posts. 2025-04-22
r-cstab public Selection of the number of clusters in cluster analysis using stability methods. 2025-04-22
r-crs public Regression splines that handle a mix of continuous and categorical (discrete) data often encountered in applied settings. I would like to gratefully acknowledge support from the Natural Sciences and Engineering Research Council of Canada (NSERC, <https://www.nserc-crsng.gc.ca>), the Social Sciences and Humanities Research Council of Canada (SSHRC, <https://www.sshrc-crsh.gc.ca>), and the Shared Hierarchical Academic Research Computing Network (SHARCNET, <https://www.sharcnet.ca>). We would also like to acknowledge the contributions of the GNU GSL authors. In particular, we adapt the GNU GSL B-spline routine gsl_bspline.c adding automated support for quantile knots (in addition to uniform knots), providing missing functionality for derivatives, and for extending the splines beyond their endpoints. 2025-04-22
r-crqa public Auto, Cross and Multi-dimensional recurrence quantification analysis. Different methods for computing recurrence, cross vs. multidimensional or profile iti.e., only looking at the diagonal recurrent points, as well as functions for optimization and plotting are proposed. in-depth measures of the whole cross-recurrence plot, Please refer to Coco and others (2021) <doi:10.32614/RJ-2021-062>, Coco and Dale (2014) <doi:10.3389/fpsyg.2014.00510> and Wallot (2018) <doi: 10.1080/00273171.2018.1512846> for further details about the method. 2025-04-22
r-crawl public Fit continuous-time correlated random walk models with time indexed covariates to animal telemetry data. The model is fit using the Kalman-filter on a state space version of the continuous-time stochastic movement process. 2025-04-22
r-crch public Different approaches to censored or truncated regression with conditional heteroscedasticity are provided. First, continuous distributions can be used for the (right and/or left censored or truncated) response with separate linear predictors for the mean and variance. Second, cumulative link models for ordinal data (obtained by interval-censoring continuous data) can be employed for heteroscedastic extended logistic regression (HXLR). In the latter type of models, the intercepts depend on the thresholds that define the intervals. Infrastructure for working with censored or truncated normal, logistic, and Student-t distributions, i.e., d/p/q/r functions and distributions3 objects. 2025-04-22
r-corpustools public Provides text analysis in R, focusing on the use of a tokenized text format. In this format, the positions of tokens are maintained, and each token can be annotated (e.g., part-of-speech tags, dependency relations). Prominent features include advanced Lucene-like querying for specific tokens or contexts (e.g., documents, sentences), similarity statistics for words and documents, exporting to DTM for compatibility with many text analysis packages, and the possibility to reconstruct original text from tokens to facilitate interpretation. 2025-04-22
r-conquer public Estimation and inference for conditional linear quantile regression models using a convolution smoothed approach. In the low-dimensional setting, efficient gradient-based methods are employed for fitting both a single model and a regression process over a quantile range. Normal-based and (multiplier) bootstrap confidence intervals for all slope coefficients are constructed. In high dimensions, the conquer method is complemented with flexible types of penalties (Lasso, elastic-net, group lasso, sparse group lasso, scad and mcp) to deal with complex low-dimensional structures. 2025-04-22
r-compositions public Provides functions for the consistent analysis of compositional data (e.g. portions of substances) and positive numbers (e.g. concentrations) in the way proposed by J. Aitchison and V. Pawlowsky-Glahn. 2025-04-22
r-cmfrec public Collective matrix factorization (a.k.a. multi-view or multi-way factorization, Singh, Gordon, (2008) <doi:10.1145/1401890.1401969>) tries to approximate a (potentially very sparse or having many missing values) matrix 'X' as the product of two low-dimensional matrices, optionally aided with secondary information matrices about rows and/or columns of 'X', which are also factorized using the same latent components. The intended usage is for recommender systems, dimensionality reduction, and missing value imputation. Implements extensions of the original model (Cortes, (2018) <arXiv:1809.00366>) and can produce different factorizations such as the weighted 'implicit-feedback' model (Hu, Koren, Volinsky, (2008) <doi:10.1109/ICDM.2008.22>), the 'weighted-lambda-regularization' model, (Zhou, Wilkinson, Schreiber, Pan, (2008) <doi:10.1007/978-3-540-68880-8_32>), or the enhanced model with 'implicit features' (Rendle, Zhang, Koren, (2019) <arXiv:1905.01395>), with or without side information. Can use gradient-based procedures or alternating-least squares procedures (Koren, Bell, Volinsky, (2009) <doi:10.1109/MC.2009.263>), with either a Cholesky solver, a faster conjugate gradient solver (Takacs, Pilaszy, Tikk, (2011) <doi:10.1145/2043932.2043987>), or a non-negative coordinate descent solver (Franc, Hlavac, Navara, (2005) <doi:10.1007/11556121_50>), providing efficient methods for sparse and dense data, and mixtures thereof. Supports L1 and L2 regularization in the main models, offers alternative most-popular and content-based models, and implements functionality for cold-start recommendations and imputation of 2D data. 2025-04-22
r-clusterr public Gaussian mixture models, k-means, mini-batch-kmeans, k-medoids and affinity propagation clustering with the option to plot, validate, predict (new data) and estimate the optimal number of clusters. The package takes advantage of 'RcppArmadillo' to speed up the computationally intensive parts of the functions. For more information, see (i) "Clustering in an Object-Oriented Environment" by Anja Struyf, Mia Hubert, Peter Rousseeuw (1997), Journal of Statistical Software, <doi:10.18637/jss.v001.i04>; (ii) "Web-scale k-means clustering" by D. Sculley (2010), ACM Digital Library, <doi:10.1145/1772690.1772862>; (iii) "Armadillo: a template-based C++ library for linear algebra" by Sanderson et al (2016), The Journal of Open Source Software, <doi:10.21105/joss.00026>; (iv) "Clustering by Passing Messages Between Data Points" by Brendan J. Frey and Delbert Dueck, Science 16 Feb 2007: Vol. 315, Issue 5814, pp. 972-976, <doi:10.1126/science.1136800>. 2025-04-22
r-clustersim public Distance measures (GDM1, GDM2, Sokal-Michener, Bray-Curtis, for symbolic interval-valued data), cluster quality indices (Calinski-Harabasz, Baker-Hubert, Hubert-Levine, Silhouette, Krzanowski-Lai, Hartigan, Gap, Davies-Bouldin), data normalization formulas (metric data, interval-valued symbolic data), data generation (typical and non-typical data), HINoV method, replication analysis, linear ordering methods, spectral clustering, agreement indices between two partitions, plot functions (for categorical and symbolic interval-valued data). (MILLIGAN, G.W., COOPER, M.C. (1985) <doi:10.1007/BF02294245>, HUBERT, L., ARABIE, P. (1985) <doi:10.1007%2FBF01908075>, RAND, W.M. (1971) <doi:10.1080/01621459.1971.10482356>, JAJUGA, K., WALESIAK, M. (2000) <doi:10.1007/978-3-642-57280-7_11>, MILLIGAN, G.W., COOPER, M.C. (1988) <doi:10.1007/BF01897163>, JAJUGA, K., WALESIAK, M., BAK, A. (2003) <doi:10.1007/978-3-642-55721-7_12>, DAVIES, D.L., BOULDIN, D.W. (1979) <doi:10.1109/TPAMI.1979.4766909>, CALINSKI, T., HARABASZ, J. (1974) <doi:10.1080/03610927408827101>, HUBERT, L. (1974) <doi:10.1080/01621459.1974.10480191>, TIBSHIRANI, R., WALTHER, G., HASTIE, T. (2001) <doi:10.1111/1467-9868.00293>, BRECKENRIDGE, J.N. (2000) <doi:10.1207/S15327906MBR3502_5>, WALESIAK, M., DUDEK, A. (2008) <doi:10.1007/978-3-540-78246-9_11>). 2025-04-22
r-clock public Provides a comprehensive library for date-time manipulations using a new family of orthogonal date-time classes (durations, time points, zoned-times, and calendars) that partition responsibilities so that the complexities of time zones are only considered when they are really needed. Capabilities include: date-time parsing, formatting, arithmetic, extraction and updating of components, and rounding. 2025-04-22
r-chillr public The phenology of plants (i.e. the timing of their annual life phases) depends on climatic cues. For temperate trees and many other plants, spring phases, such as leaf emergence and flowering, have been found to result from the effects of both cool (chilling) conditions and heat. Fruit tree scientists (pomologists) have developed some metrics to quantify chilling and heat (e.g. see Luedeling (2012) <doi:10.1016/j.scienta.2012.07.011>). 'chillR' contains functions for processing temperature records into chilling (Chilling Hours, Utah Chill Units and Chill Portions) and heat units (Growing Degree Hours). Regarding chilling metrics, Chill Portions are often considered the most promising, but they are difficult to calculate. This package makes it easy. 'chillR' also contains procedures for conducting a PLS analysis relating phenological dates (e.g. bloom dates) to either mean temperatures or mean chill and heat accumulation rates, based on long-term weather and phenology records (Luedeling and Gassner (2012) <doi:10.1016/j.agrformet.2011.10.020>). As of version 0.65, it also includes functions for generating weather scenarios with a weather generator, for conducting climate change analyses for temperature-based climatic metrics and for plotting results from such analyses. Since version 0.70, 'chillR' contains a function for interpolating hourly temperature records. 2025-04-22

© 2025 Anaconda, Inc. All Rights Reserved. (v4.1.0) Legal | Privacy Policy