About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-strucchangercpp public A fast implementation with additional experimental features for testing, monitoring and dating structural changes in (linear) regression models. 'strucchangeRcpp' features tests/methods from the generalized fluctuation test framework as well as from the F test (Chow test) framework. This includes methods to fit, plot and test fluctuation processes (e.g. cumulative/moving sum, recursive/moving estimates) and F statistics, respectively. These methods are described in Zeileis et al. (2002) <doi:10.18637/jss.v007.i02>. Finally, the breakpoints in regression models with structural changes can be estimated together with confidence intervals, and their magnitude as well as the model fit can be evaluated using a variety of statistical measures. 2025-04-22
r-subselect public A collection of functions which (i) assess the quality of variable subsets as surrogates for a full data set, in either an exploratory data analysis or in the context of a multivariate linear model, and (ii) search for subsets which are optimal under various criteria. Theoretical support for the heuristic search methods and exploratory data analysis criteria is in Cadima, Cerdeira, Minhoto (2003, <doi:10.1016/j.csda.2003.11.001>). Theoretical support for the leap and bounds algorithm and the criteria for the general multivariate linear model is in Duarte Silva (2001, <doi:10.1006/jmva.2000.1920>). There is a package vignette "subselect", which includes additional references. 2025-04-22
r-stringfish public Provides an extendable, performant and multithreaded 'alt-string' implementation backed by 'C++' vectors and strings. 2025-04-22
r-strex public There are some things that I wish were easier with the 'stringr' or 'stringi' packages. The foremost of these is the extraction of numbers from strings. 'stringr' and 'stringi' make you figure out the regular expression for yourself; 'strex' takes care of this for you. There are many other handy functionalities in 'strex'. Contributions to this package are encouraged: it is intended as a miscellany of string manipulation functions that cannot be found in 'stringi' or 'stringr'. 2025-04-22
r-strawr public API for fast data extraction for .hic files that provides programmatic access to the matrices. It doesn't store the pointer data for all the matrices, only the one queried, and currently we are only supporting matrices (not vectors). 2025-04-22
r-stm public The Structural Topic Model (STM) allows researchers to estimate topic models with document-level covariates. The package also includes tools for model selection, visualization, and estimation of topic-covariate regressions. Methods developed in Roberts et. al. (2014) <doi:10.1111/ajps.12103> and Roberts et. al. (2016) <doi:10.1080/01621459.2016.1141684>. Vignette is Roberts et. al. (2019) <doi:10.18637/jss.v091.i02>. 2025-04-22
r-stlplus public Decompose a time series into seasonal, trend, and remainder components using an implementation of Seasonal Decomposition of Time Series by Loess (STL) that provides several enhancements over the STL method in the stats package. These enhancements include handling missing values, providing higher order (quadratic) loess smoothing with automated parameter choices, frequency component smoothing beyond the seasonal and trend components, and some basic plot methods for diagnostics. 2025-04-22
r-statip public A collection of miscellaneous statistical functions for probability distributions: 'dbern()', 'pbern()', 'qbern()', 'rbern()' for the Bernoulli distribution, and 'distr2name()', 'name2distr()' for distribution names; probability density estimation: 'densityfun()'; most frequent value estimation: 'mfv()', 'mfv1()'; other statistical measures of location: 'cv()' (coefficient of variation), 'midhinge()', 'midrange()', 'trimean()'; construction of histograms: 'histo()', 'find_breaks()'; calculation of the Hellinger distance: 'hellinger()'; use of classical kernels: 'kernelfun()', 'kernel_properties()'; univariate piecewise-constant regression: 'picor()'. 2025-04-22
r-staggered public Efficiently estimates treatment effects in settings with randomized staggered rollouts, using tools proposed by Roth and Sant'Anna (2021) <arXiv:2102.01291>. 2025-04-22
r-stan4bart public Fits semiparametric linear and multilevel models with non-parametric additive Bayesian additive regression tree (BART; Chipman, George, and McCulloch (2010) <doi:10.1214/09-AOAS285>) components and Stan (Stan Development Team (2021) <https://mc-stan.org/>) sampled parametric ones. Multilevel models can be expressed using 'lme4' syntax (Bates, Maechler, Bolker, and Walker (2015) <doi:10.18637/jss.v067.i01>). 2025-04-22
r-stable public Density, distribution, quantile and hazard functions of a stable variate; generalized regression models for the parameters of a stable distribution. See the README for how to make equivalent calls to those of 'stabledist' (i.e., Nolan's 0-parameterization and 1-parameterization as detailed in Nolan (2020)). See github for Lambert and Lindsey 1999 JRSS-C journal article, which details the parameterization of the Buck (1995) stable. See the Details section of the `?dstable` help file for context and references. 2025-04-22
r-spdep public A collection of functions to create spatial weights matrix objects from polygon 'contiguities', from point patterns by distance and tessellations, for summarizing these objects, and for permitting their use in spatial data analysis, including regional aggregation by minimum spanning tree; a collection of tests for spatial 'autocorrelation', including global 'Morans I' and 'Gearys C' proposed by 'Cliff' and 'Ord' (1973, ISBN: 0850860369) and (1981, ISBN: 0850860814), 'Hubert/Mantel' general cross product statistic, Empirical Bayes estimates and 'Assunção/Reis' (1999) <doi:10.1002/(SICI)1097-0258(19990830)18:16%3C2147::AID-SIM179%3E3.0.CO;2-I> Index, 'Getis/Ord' G ('Getis' and 'Ord' 1992) <doi:10.1111/j.1538-4632.1992.tb00261.x> and multicoloured join count statistics, 'APLE' ('Li 'et al.' ) <doi:10.1111/j.1538-4632.2007.00708.x>, local 'Moran's I', 'Gearys C' ('Anselin' 1995) <doi:10.1111/j.1538-4632.1995.tb00338.x> and 'Getis/Ord' G ('Ord' and 'Getis' 1995) <doi:10.1111/j.1538-4632.1995.tb00912.x>, 'saddlepoint' approximations ('Tiefelsdorf' 2002) <doi:10.1111/j.1538-4632.2002.tb01084.x> and exact tests for global and local 'Moran's I' ('Bivand et al.' 2009) <doi:10.1016/j.csda.2008.07.021> and 'LOSH' local indicators of spatial heteroscedasticity ('Ord' and 'Getis') <doi:10.1007/s00168-011-0492-y>. The implementation of most of the measures is described in 'Bivand' and 'Wong' (2018) <doi:10.1007/s11749-018-0599-x>, with further extensions in 'Bivand' (2022) <doi:10.1111/gean.12319>. From 'spdep' and 'spatialreg' versions >= 1.2-1, the model fitting functions previously present in this package are defunct in 'spdep' and may be found in 'spatialreg'. 2025-04-22
r-spcr public The sparse principal component regression is computed. The regularization parameters are optimized by cross-validation. 2025-04-22
r-spatstat.model public Functionality for parametric statistical modelling and inference for spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Supports parametric modelling, formal statistical inference, and model validation. Parametric models include Poisson point processes, Cox point processes, Neyman-Scott cluster processes, Gibbs point processes and determinantal point processes. Models can be fitted to data using maximum likelihood, maximum pseudolikelihood, maximum composite likelihood and the method of minimum contrast. Fitted models can be simulated and predicted. Formal inference includes hypothesis tests (quadrat counting tests, Cressie-Read tests, Clark-Evans test, Berman test, Diggle-Cressie-Loosmore-Ford test, scan test, studentised permutation test, segregation test, ANOVA tests of fitted models, adjusted composite likelihood ratio test, envelope tests, Dao-Genton test, balanced independent two-stage test), confidence intervals for parameters, and prediction intervals for point counts. Model validation techniques include leverage, influence, partial residuals, added variable plots, diagnostic plots, pseudoscore residual plots, model compensators and Q-Q plots. 2025-04-22
r-spatstat.explore public Functionality for exploratory data analysis and nonparametric analysis of spatial data, mainly spatial point patterns, in the 'spatstat' family of packages. (Excludes analysis of spatial data on a linear network, which is covered by the separate package 'spatstat.linnet'.) Methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported. 2025-04-22
r-spatialwidget public Many packages use 'htmlwidgets' <https://CRAN.R-project.org/package=htmlwidgets> for interactive plotting of spatial data. This package provides functions for converting R objects, such as simple features, into structures suitable for use in 'htmlwidgets' mapping libraries. 2025-04-22
r-spatialsample public Functions and classes for spatial resampling to use with the 'rsample' package, such as spatial cross-validation (Brenning, 2012) <doi:10.1109/IGARSS.2012.6352393>. The scope of 'rsample' and 'spatialsample' is to provide the basic building blocks for creating and analyzing resamples of a spatial data set, but neither package includes functions for modeling or computing statistics. The resampled spatial data sets created by 'spatialsample' do not contain much overhead in memory. 2025-04-22
r-spatialepi public Methods and data for cluster detection and disease mapping. 2025-04-22
r-spatialreg public A collection of all the estimation functions for spatial cross-sectional models (on lattice/areal data using spatial weights matrices) contained up to now in 'spdep'. These model fitting functions include maximum likelihood methods for cross-sectional models proposed by 'Cliff' and 'Ord' (1973, ISBN:0850860369) and (1981, ISBN:0850860814), fitting methods initially described by 'Ord' (1975) <doi:10.1080/01621459.1975.10480272>. The models are further described by 'Anselin' (1988) <doi:10.1007/978-94-015-7799-1>. Spatial two stage least squares and spatial general method of moment models initially proposed by 'Kelejian' and 'Prucha' (1998) <doi:10.1023/A:1007707430416> and (1999) <doi:10.1111/1468-2354.00027> are provided. Impact methods and MCMC fitting methods proposed by 'LeSage' and 'Pace' (2009) <doi:10.1201/9781420064254> are implemented for the family of cross-sectional spatial regression models. Methods for fitting the log determinant term in maximum likelihood and MCMC fitting are compared by 'Bivand et al.' (2013) <doi:10.1111/gean.12008>, and model fitting methods by 'Bivand' and 'Piras' (2015) <doi:10.18637/jss.v063.i18>; both of these articles include extensive lists of references. A recent review is provided by 'Bivand', 'Millo' and 'Piras' (2021) <doi:10.3390/math9111276>. 'spatialreg' >= 1.1-* corresponded to 'spdep' >= 1.1-1, in which the model fitting functions were deprecated and passed through to 'spatialreg', but masked those in 'spatialreg'. From versions 1.2-*, the functions have been made defunct in 'spdep'. 2025-04-22
r-spatialextremes public Tools for the statistical modelling of spatial extremes using max-stable processes, copula or Bayesian hierarchical models. More precisely, this package allows (conditional) simulations from various parametric max-stable models, analysis of the extremal spatial dependence, the fitting of such processes using composite likelihoods or least square (simple max-stable processes only), model checking and selection and prediction. Other approaches (although not completely in agreement with the extreme value theory) are available such as the use of (spatial) copula and Bayesian hierarchical models assuming the so-called conditional assumptions. The latter approaches is handled through an (efficient) Gibbs sampler. Some key references: Davison et al. (2012) <doi:10.1214/11-STS376>, Padoan et al. (2010) <doi:10.1198/jasa.2009.tm08577>, Dombry et al. (2013) <doi:10.1093/biomet/ass067>. 2025-04-22
r-spant public Tools for reading, visualising and processing Magnetic Resonance Spectroscopy data. The package includes methods for spectral fitting: Wilson (2021) <DOI:10.1002/mrm.28385> and spectral alignment: Wilson (2018) <DOI:10.1002/mrm.27605>. 2025-04-22
r-sparseinv public Creates a wrapper for the 'SuiteSparse' routines that execute the Takahashi equations. These equations compute the elements of the inverse of a sparse matrix at locations where the its Cholesky factor is structurally non-zero. The resulting matrix is known as a sparse inverse subset. Some helper functions are also implemented. Support for spam matrices is currently limited and will be implemented in the future. See Rue and Martino (2007) <doi:10.1016/j.jspi.2006.07.016> and Zammit-Mangion and Rougier (2018) <doi:10.1016/j.csda.2018.02.001> for the application of these equations to statistics. 2025-04-22
r-spamm public Inference based on models with or without spatially-correlated random effects, multivariate responses, or non-Gaussian random effects (e.g., Beta). Variation in residual variance (heteroscedasticity) can itself be represented by a mixed-effect model. Both classical geostatistical models (Rousset and Ferdy 2014 <doi:10.1111/ecog.00566>), and Markov random field models on irregular grids (as considered in the 'INLA' package, <https://www.r-inla.org>), can be fitted, with distinct computational procedures exploiting the sparse matrix representations for the latter case and other autoregressive models. Laplace approximations are used for likelihood or restricted likelihood. Penalized quasi-likelihood and other variants discussed in the h-likelihood literature (Lee and Nelder 2001 <doi:10.1093/biomet/88.4.987>) are also implemented. 2025-04-22
r-sna public A range of tools for social network analysis, including node and graph-level indices, structural distance and covariance methods, structural equivalence detection, network regression, random graph generation, and 2D/3D network visualization. 2025-04-22
r-smooth public Functions implementing Single Source of Error state space models for purposes of time series analysis and forecasting. The package includes ADAM (Svetunkov, 2023, <https://openforecast.org/adam/>), Exponential Smoothing (Hyndman et al., 2008, <doi: 10.1007/978-3-540-71918-2>), SARIMA (Svetunkov & Boylan, 2019 <doi: 10.1080/00207543.2019.1600764>), Complex Exponential Smoothing (Svetunkov & Kourentzes, 2018, <doi: 10.13140/RG.2.2.24986.29123>), Simple Moving Average (Svetunkov & Petropoulos, 2018 <doi: 10.1080/00207543.2017.1380326>) and several simulation functions. It also allows dealing with intermittent demand based on the iETS framework (Svetunkov & Boylan, 2019, <doi: 10.13140/RG.2.2.35897.06242>). 2025-04-22

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.1) Legal | Privacy Policy