r-tmvtnorm
|
public |
Random number generation for the truncated multivariate normal and Student t distribution. Computes probabilities, quantiles and densities, including one-dimensional and bivariate marginal densities. Computes first and second moments (i.e. mean and covariance matrix) for the double-truncated multinormal case.
|
2025-04-22 |
r-tlrmvnmvt
|
public |
Implementation of the classic Genz algorithm and a novel tile-low-rank algorithm for computing relatively high-dimensional multivariate normal (MVN) and Student-t (MVT) probabilities. References used for this package: Foley, James, Andries van Dam, Steven Feiner, and John Hughes. "Computer Graphics: Principle and Practice". Addison-Wesley Publishing Company. Reading, Massachusetts (1987, ISBN:0-201-84840-6 1); Genz, A., "Numerical computation of multivariate normal probabilities," Journal of Computational and Graphical Statistics, 1, 141-149 (1992) <doi:10.1080/10618600.1992.10477010>; Cao, J., Genton, M. G., Keyes, D. E., & Turkiyyah, G. M. "Exploiting Low Rank Covariance Structures for Computing High-Dimensional Normal and Student- t Probabilities," Statistics and Computing, 31.1, 1-16 (2021) <doi:10.1007/s11222-020-09978-y>; Cao, J., Genton, M. G., Keyes, D. E., & Turkiyyah, G. M. "tlrmvnmvt: Computing High-Dimensional Multivariate Normal and Student-t Probabilities with Low-Rank Methods in R," Journal of Statistical Software, 101.4, 1-25 (2022) <doi:10.18637/jss.v101.i04>.
|
2025-04-22 |
r-tiledb
|
public |
The universal storage engine 'TileDB' introduces a powerful on-disk format for multi-dimensional arrays. It supports dense and sparse arrays, dataframes and key-values stores, cloud storage ('S3', 'GCS', 'Azure'), chunked arrays, multiple compression, encryption and checksum filters, uses a fully multi-threaded implementation, supports parallel I/O, data versioning ('time travel'), metadata and groups. It is implemented as an embeddable cross-platform C++ library with APIs from several languages, and integrations.
|
2025-04-22 |
r-tlmoments
|
public |
Calculates empirical TL-moments (trimmed L-moments) of arbitrary order and trimming, and converts them to distribution parameters.
|
2025-04-22 |
r-tidygraph
|
public |
A graph, while not "tidy" in itself, can be thought of as two tidy data frames describing node and edge data respectively. 'tidygraph' provides an approach to manipulate these two virtual data frames using the API defined in the 'dplyr' package, as well as provides tidy interfaces to a lot of common graph algorithms.
|
2025-04-22 |
r-tikzdevice
|
public |
Provides a graphics output device for R that records plots in a LaTeX-friendly format. The device transforms plotting commands issued by R functions into LaTeX code blocks. When included in a LaTeX document, these blocks are interpreted with the help of 'TikZ'---a graphics package for TeX and friends written by Till Tantau. Using the 'tikzDevice', the text of R plots can contain LaTeX commands such as mathematical formula. The device also allows arbitrary LaTeX code to be inserted into the output stream.
|
2025-04-22 |
r-tidyxl
|
public |
Imports non-tabular from Excel files into R. Exposes cell content, position and formatting in a tidy structure for further manipulation. Tokenizes Excel formulas. Supports '.xlsx' and '.xlsm' via the embedded 'RapidXML' C++ library <https://rapidxml.sourceforge.net>. Does not support '.xlsb' or '.xls'.
|
2025-04-22 |
r-tibbletime
|
public |
Built on top of the 'tibble' package, 'tibbletime' is an extension that allows for the creation of time aware tibbles. Some immediate advantages of this include: the ability to perform time-based subsetting on tibbles, quickly summarising and aggregating results by time periods, and creating columns that can be used as 'dplyr' time-based groups.
|
2025-04-22 |
r-tgp
|
public |
Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian processes (GPs) with jumps to the limiting linear model (LLM). Special cases also implemented include Bayesian linear models, CART, treed linear models, stationary separable and isotropic GPs, and GP single-index models. Provides 1-d and 2-d plotting functions (with projection and slice capabilities) and tree drawing, designed for visualization of tgp-class output. Sensitivity analysis and multi-resolution models are supported. Sequential experimental design and adaptive sampling functions are also provided, including ALM, ALC, and expected improvement. The latter supports derivative-free optimization of noisy black-box functions. For details and tutorials, see Gramacy (2007) <doi:10.18637/jss.v019.i09> and Gramacy & Taddy (2010) <doi:10.18637/jss.v033.i06>.
|
2025-04-22 |
r-textrecipes
|
public |
Converting text to numerical features requires specifically created procedures, which are implemented as steps according to the 'recipes' package. These steps allows for tokenization, filtering, counting (tf and tfidf) and feature hashing.
|
2025-04-22 |
r-this.path
|
public |
Determine the path of the executing script. Compatible with a few popular GUIs: 'Rgui', 'RStudio', 'VSCode', 'Jupyter', and 'Rscript' (shell). Compatible with several functions and packages: 'source()', 'sys.source()', 'debugSource()' in 'RStudio', 'compiler::loadcmp()', 'box::use()', 'knitr::knit()', 'plumber::plumb()', 'shiny::runApp()', 'package:targets', and 'testthat::source_file()'.
|
2025-04-22 |
r-text2vec
|
public |
Fast and memory-friendly tools for text vectorization, topic modeling (LDA, LSA), word embeddings (GloVe), similarities. This package provides a source-agnostic streaming API, which allows researchers to perform analysis of collections of documents which are larger than available RAM. All core functions are parallelized to benefit from multicore machines.
|
2025-04-22 |
r-textminer
|
public |
An aid for text mining in R, with a syntax that should be familiar to experienced R users. Provides a wrapper for several topic models that take similarly-formatted input and give similarly-formatted output. Has additional functionality for analyzing and diagnostics for topic models.
|
2025-04-22 |
r-terrainmeshr
|
public |
Provides triangulations of regular height fields, based on the methods described in "Fast Polygonal Approximation of Terrains and Height Fields" Michael Garland and Paul S. Heckbert (1995) <https://www.mgarland.org/files/papers/scape.pdf> using code from the 'hmm' library written by Michael Fogleman <https://www.github.com/fogleman/hmm>.
|
2025-04-22 |
r-tergm
|
public |
An integrated set of extensions to the 'ergm' package to analyze and simulate network evolution based on exponential-family random graph models (ERGM). 'tergm' is a part of the 'statnet' suite of packages for network analysis. See Krivitsky and Handcock (2014) <doi:10.1111/rssb.12014> and Carnegie, Krivitsky, Hunter, and Goodreau (2015) <doi:10.1080/10618600.2014.903087>.
|
2025-04-22 |
r-targeted
|
public |
Various methods for targeted and semiparametric inference including augmented inverse probability weighted estimators for missing data and causal inference (Bang and Robins (2005) <doi:10.1111/j.1541-0420.2005.00377.x>) and estimators for risk differences and relative risks (Richardson et al. (2017) <doi:10.1080/01621459.2016.1192546>).
|
2025-04-22 |
r-tam
|
public |
Includes marginal maximum likelihood estimation and joint maximum likelihood estimation for unidimensional and multidimensional item response models. The package functionality covers the Rasch model, 2PL model, 3PL model, generalized partial credit model, multi-faceted Rasch model, nominal item response model, structured latent class model, mixture distribution IRT models, and located latent class models. Latent regression models and plausible value imputation are also supported. For details see Adams, Wilson and Wang, 1997 <doi:10.1177/0146621697211001>, Adams, Wilson and Wu, 1997 <doi:10.3102/10769986022001047>, Formann, 1982 <doi:10.1002/bimj.4710240209>, Formann, 1992 <doi:10.1080/01621459.1992.10475229>.
|
2025-04-22 |
r-tabulate
|
public |
Generates pretty console output for tables allowing for full customization of cell colors, font type, borders and many others attributes. It also supports 'multibyte' characters and nested tables.
|
2025-04-22 |
r-symengine
|
public |
Provides an R interface to 'SymEngine' <https://github.com/symengine/>, a standalone 'C++' library for fast symbolic manipulation. The package has functionalities for symbolic computation like calculating exact mathematical expressions, solving systems of linear equations and code generation.
|
2025-04-22 |
r-symmetry
|
public |
Implementations of a large number of tests for symmetry and their bootstrap variants, which can be used for testing the symmetry of random samples around a known or unknown mean. Functions are also there for testing the symmetry of model residuals around zero. Currently, the supported models are linear models and generalized autoregressive conditional heteroskedasticity (GARCH) models (fitted with the 'fGarch' package). All tests are implemented using the 'Rcpp' package which ensures great performance of the code.
|
2025-04-22 |
r-swarmsvm
|
public |
Three ensemble learning algorithms based on support vector machines. They all train support vector machines on subset of data and combine the result.
|
2025-04-22 |
r-svars
|
public |
Implements data-driven identification methods for structural vector autoregressive (SVAR) models as described in Lange et al. (2021) <doi:10.18637/jss.v097.i05>. Based on an existing VAR model object (provided by e.g. VAR() from the 'vars' package), the structural impact matrix is obtained via data-driven identification techniques (i.e. changes in volatility (Rigobon, R. (2003) <doi:10.1162/003465303772815727>), patterns of GARCH (Normadin, M., Phaneuf, L. (2004) <doi:10.1016/j.jmoneco.2003.11.002>), independent component analysis (Matteson, D. S, Tsay, R. S., (2013) <doi:10.1080/01621459.2016.1150851>), least dependent innovations (Herwartz, H., Ploedt, M., (2016) <doi:10.1016/j.jimonfin.2015.11.001>), smooth transition in variances (Luetkepohl, H., Netsunajev, A. (2017) <doi:10.1016/j.jedc.2017.09.001>) or non-Gaussian maximum likelihood (Lanne, M., Meitz, M., Saikkonen, P. (2017) <doi:10.1016/j.jeconom.2016.06.002>)).
|
2025-04-22 |
r-survidinri
|
public |
Performs inference for a class of measures to compare competing risk prediction models with censored survival data. The class includes the integrated discrimination improvement index (IDI) and category-less net reclassification index (NRI).
|
2025-04-22 |
r-surveillance
|
public |
Statistical methods for the modeling and monitoring of time series of counts, proportions and categorical data, as well as for the modeling of continuous-time point processes of epidemic phenomena. The monitoring methods focus on aberration detection in count data time series from public health surveillance of communicable diseases, but applications could just as well originate from environmetrics, reliability engineering, econometrics, or social sciences. The package implements many typical outbreak detection procedures such as the (improved) Farrington algorithm, or the negative binomial GLR-CUSUM method of Hoehle and Paul (2008) <doi:10.1016/j.csda.2008.02.015>. A novel CUSUM approach combining logistic and multinomial logistic modeling is also included. The package contains several real-world data sets, the ability to simulate outbreak data, and to visualize the results of the monitoring in a temporal, spatial or spatio-temporal fashion. A recent overview of the available monitoring procedures is given by Salmon et al. (2016) <doi:10.18637/jss.v070.i10>. For the retrospective analysis of epidemic spread, the package provides three endemic-epidemic modeling frameworks with tools for visualization, likelihood inference, and simulation. hhh4() estimates models for (multivariate) count time series following Paul and Held (2011) <doi:10.1002/sim.4177> and Meyer and Held (2014) <doi:10.1214/14-AOAS743>. twinSIR() models the susceptible-infectious-recovered (SIR) event history of a fixed population, e.g, epidemics across farms or networks, as a multivariate point process as proposed by Hoehle (2009) <doi:10.1002/bimj.200900050>. twinstim() estimates self-exciting point process models for a spatio-temporal point pattern of infective events, e.g., time-stamped geo-referenced surveillance data, as proposed by Meyer et al. (2012) <doi:10.1111/j.1541-0420.2011.01684.x>. A recent overview of the implemented space-time modeling frameworks for epidemic phenomena is given by Meyer et al. (2017) <doi:10.18637/jss.v077.i11>.
|
2025-04-22 |
r-superml
|
public |
The idea is to provide a standard interface to users who use both R and Python for building machine learning models. This package provides a scikit-learn's fit, predict interface to train machine learning models in R.
|
2025-04-22 |