About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-multivariaterandomforest public Models and predicts multiple output features in single random forest considering the linear relation among the output features, see details in Rahman et al (2017)<doi:10.1093/bioinformatics/btw765>. 2025-04-22
r-multivariance public Distance multivariance is a measure of dependence which can be used to detect and quantify dependence of arbitrarily many random vectors. The necessary functions are implemented in this packages and examples are given. It includes: distance multivariance, distance multicorrelation, dependence structure detection, tests of independence and copula versions of distance multivariance based on the Monte Carlo empirical transform. Detailed references are given in the package description, as starting point for the theoretic background we refer to: B. Böttcher, Dependence and Dependence Structures: Estimation and Visualization Using the Unifying Concept of Distance Multivariance. Open Statistics, Vol. 1, No. 1 (2020), <doi:10.1515/stat-2020-0001>. 2025-04-22
r-multitaper public Implements multitaper spectral analysis using discrete prolate spheroidal sequences (Slepians) and sine tapers. It includes an adaptive weighted multitaper spectral estimate, a coherence estimate, Thomson's Harmonic F-test, and complex demodulation. The Slepians sequences are generated efficiently using a tridiagonal matrix solution, and jackknifed confidence intervals are available for most estimates. This package is an implementation of the method described in D.J. Thomson (1982) "Spectrum estimation and harmonic analysis" <doi:10.1109/PROC.1982.12433>. 2025-04-22
r-multispatialccm public The multispatial convergent cross mapping algorithm can be used as a test for causal associations between pairs of processes represented by time series. This is a combination of convergent cross mapping (CCM), described in Sugihara et al., 2012, Science, 338, 496-500, and dew-drop regression, described in Hsieh et al., 2008, American Naturalist, 171, 71–80. The algorithm allows CCM to be implemented on data that are not from a single long time series. Instead, data can come from many short time series, which are stitched together using bootstrapping. 2025-04-22
r-multinet public Functions for the creation/generation and analysis of multilayer social networks <doi:10.18637/jss.v098.i08>. 2025-04-22
r-multifit public Test for independence of two random vectors, learn and report the dependency structure. For more information, see Gorsky, Shai and Li Ma, Multiscale Fisher's Independence Test for Multivariate Dependence, Biometrika, accepted, January 2022. 2025-04-22
r-multicool public A set of tools to permute multisets without loops or hash tables and to generate integer partitions. The permutation functions are based on C code from Aaron Williams. Cool-lex order is similar to colexicographical order. The algorithm is described in Williams, A. Loopless Generation of Multiset Permutations by Prefix Shifts. SODA 2009, Symposium on Discrete Algorithms, New York, United States. The permutation code is distributed without restrictions. The code for stable and efficient computation of multinomial coefficients comes from Dave Barber. The code can be download from <http://tamivox.org/dave/multinomial/index.html> and is distributed without conditions. The package also generates the integer partitions of a positive, non-zero integer n. The C++ code for this is based on Python code from Jerome Kelleher which can be found here <https://jeromekelleher.net/category/combinatorics.html>. The C++ code and Python code are distributed without conditions. 2025-04-22
r-multicnvdetect public This package provides a tool for analysis of multiple CNV. 2025-04-22
r-muhaz public Produces a smooth estimate of the hazard function for censored data. 2025-04-22
r-mudens public Compute a density estimate from a vector of right-censored survival time using kernel functions. 2025-04-22
r-muchpoint public Nonparametric approach to estimate the location of block boundaries (change-points) of non-overlapping blocks in a random symmetric matrix which consists of random variables whose distribution changes from block to block. BRAULT Vincent, OUADAH Sarah, SANSONNET Laure and LEVY-LEDUC Celine (2017) <doi:10.1016/j.jmva.2017.12.005>. 2025-04-22
r-mts public Multivariate Time Series (MTS) is a general package for analyzing multivariate linear time series and estimating multivariate volatility models. It also handles factor models, constrained factor models, asymptotic principal component analysis commonly used in finance and econometrics, and principal volatility component analysis. (a) For the multivariate linear time series analysis, the package performs model specification, estimation, model checking, and prediction for many widely used models, including vector AR models, vector MA models, vector ARMA models, seasonal vector ARMA models, VAR models with exogenous variables, multivariate regression models with time series errors, augmented VAR models, and Error-correction VAR models for co-integrated time series. For model specification, the package performs structural specification to overcome the difficulties of identifiability of VARMA models. The methods used for structural specification include Kronecker indices and Scalar Component Models. (b) For multivariate volatility modeling, the MTS package handles several commonly used models, including multivariate exponentially weighted moving-average volatility, Cholesky decomposition volatility models, dynamic conditional correlation (DCC) models, copula-based volatility models, and low-dimensional BEKK models. The package also considers multiple tests for conditional heteroscedasticity, including rank-based statistics. (c) Finally, the MTS package also performs forecasting using diffusion index , transfer function analysis, Bayesian estimation of VAR models, and multivariate time series analysis with missing values.Users can also use the package to simulate VARMA models, to compute impulse response functions of a fitted VARMA model, and to calculate theoretical cross-covariance matrices of a given VARMA model. 2025-04-22
r-mtlr public An implementation of Multi-Task Logistic Regression (MTLR) for R. This package is based on the method proposed by Yu et al. (2011) which utilized MTLR for generating individual survival curves by learning feature weights which vary across time. This model was further extended to account for left and interval censored data. 2025-04-22
r-mstate public Contains functions for data preparation, descriptives, hazard estimation and prediction with Aalen-Johansen or simulation in competing risks and multi-state models, see Putter, Fiocco, Geskus (2007) <doi:10.1002/sim.2712>. 2025-04-22
r-mssm public Provides methods to perform parameter estimation and make analysis of multivariate observed outcomes through time which depends on a latent state variable. All methods scale well in the dimension of the observed outcomes at each time point. The package contains an implementation of a Laplace approximation, particle filters like suggested by Lin, Zhang, Cheng, & Chen (2005) <doi:10.1198/016214505000000349>, and the gradient and observed information matrix approximation suggested by Poyiadjis, Doucet, & Singh (2011) <doi:10.1093/biomet/asq062>. 2025-04-22
r-msimcc public Micro simulation model to reproduce natural history of cervical cancer and cost-effectiveness evaluation of prevention strategies. See Georgalis L, de Sanjose S, Esnaola M, Bosch F X, Diaz M (2016) <doi:10.1097/CEJ.0000000000000202> for more details. 2025-04-22
r-msgps public Computes the degrees of freedom of the lasso, elastic net, generalized elastic net and adaptive lasso based on the generalized path seeking algorithm. The optimal model can be selected by model selection criteria including Mallows' Cp, bias-corrected AIC (AICc), generalized cross validation (GCV) and BIC. 2025-04-22
r-msglasso public For fitting multivariate response and multiple predictor linear regressions with an arbitrary group structure assigned on the regression coefficient matrix, using the multivariate sparse group lasso and the mixed coordinate descent algorithm. 2025-04-22
r-msde public Implements an MCMC sampler for the posterior distribution of arbitrary time-homogeneous multivariate stochastic differential equation (SDE) models with possibly latent components. The package provides a simple entry point to integrate user-defined models directly with the sampler's C++ code, and parallelizes large portions of the calculations when compiled with 'OpenMP'. 2025-04-22
r-msda public Efficient procedures for computing a new Multi-Class Sparse Discriminant Analysis method that estimates all discriminant directions simultaneously. It is an implementation of the work proposed by Mai, Q., Yang, Y., and Zou, H. (2019) <doi:10.5705/ss.202016.0117>. 2025-04-22
r-msbp public Performs Bayesian nonparametric multiscale density estimation and multiscale testing of group differences with multiscale Bernstein polynomials (msBP) mixtures as in Canale and Dunson (2016). 2025-04-22
r-mrs public An implementation of the MRS algorithm for comparison across distributions, as described in Jacopo Soriano, Li Ma (2016) <doi:10.1111/rssb.12180>. The model is based on a nonparametric process taking the form of a Markov model that transitions between a "null" and an "alternative" state on a multi-resolution partition tree of the sample space. MRS effectively detects and characterizes a variety of underlying differences. These differences can be visualized using several plotting functions. 2025-04-22
r-mrmre public Computes mutual information matrices from continuous, categorical and survival variables, as well as feature selection with minimum redundancy, maximum relevance (mRMR) and a new ensemble mRMR technique. Published in De Jay et al. (2013) <doi:10.1093/bioinformatics/btt383>. 2025-04-22
r-mrm public Conditional maximum likelihood estimation via the EM algorithm and information-criterion-based model selection in binary mixed Rasch models. 2025-04-22
r-mrfse public Three algorithms for estimating a Markov random field structure.Two of them are an exact version and a simulated annealing version of a penalized maximum conditional likelihood method similar to the Bayesian Information Criterion. These algorithm are described in Frondana (2016) <doi:10.11606/T.45.2018.tde-02022018-151123>.The third one is a greedy algorithm, described in Bresler (2015) <doi:10.1145/2746539.2746631). 2025-04-22

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.2) Legal | Privacy Policy