About Anaconda Help Download Anaconda

r / packages

Package Name Access Summary Updated
r-epicontacttrace public Routines for epidemiological contact tracing and visualisation of network of contacts. 2025-04-22
r-elec.strat public An extension of the elec package intended for use on election audits using stratified random samples. Includes functions to obtain conservative and exact p-values, and functions that give sample sizes that may make election audits more efficient. 2025-04-22
r-bnclassify public State-of-the art algorithms for learning discrete Bayesian network classifiers from data, including a number of those described in Bielza & Larranaga (2014) <doi:10.1145/2576868>, with functions for prediction, model evaluation and inspection. 2025-04-22
r-arrow public 'Apache' 'Arrow' <https://arrow.apache.org/> is a cross-language development platform for in-memory data. It specifies a standardized language-independent columnar memory format for flat and hierarchical data, organized for efficient analytic operations on modern hardware. This package provides an interface to the 'Arrow C++' library. 2025-04-22
numpy-devel public No Summary 2025-04-22
numpy-base public No Summary 2025-04-22
numpy public Array processing for numbers, strings, records, and objects. 2025-04-22
mkl_fft public NumPy-based implementation of Fast Fourier Transform using Intel (R) Math Kernel Library. 2025-04-22
mkl_random public Intel (R) MKL-powered package for sampling from common probability distributions into NumPy arrays. 2025-04-22
r-namespace public This package provides user-level functions to manage namespaces not (yet) available in base R: 'registerNamespace', 'unregisterNamespace', 'makeNamespace', and 'getRegisteredNamespace' . ('makeNamespaces' is extracted from the R 'base' package source code: src/library/base/R/namespace.R) 2025-04-22
r-nam public Designed for association studies in nested association mapping (NAM) panels, experimental and random panels. The method is described by Xavier et al. (2015) <doi:10.1093/bioinformatics/btv448>. It includes tools for genome-wide associations of multiple populations, marker quality control, population genetics analysis, genome-wide prediction, solving mixed models and finding variance components through likelihood and Bayesian methods. 2025-04-22
r-nadiv public Constructs (non)additive genetic relationship matrices, and their inverses, from a pedigree to be used in linear mixed effect models (A.K.A. the 'animal model'). Also includes other functions to facilitate the use of animal models. Some functions have been created to be used in conjunction with the R package 'asreml' for the 'ASReml' software, which can be obtained upon purchase from 'VSN' international (<https://vsni.co.uk/software/asreml>). 2025-04-22
r-nabor public An R wrapper for 'libnabo', an exact or approximate k nearest neighbour library which is optimised for low dimensional spaces (e.g. 3D). 'libnabo' has speed and space advantages over the 'ANN' library wrapped by package 'RANN'. 'nabor' includes a knn function that is designed as a drop-in replacement for 'RANN' function nn2. In addition, objects which include the k-d tree search structure can be returned to speed up repeated queries of the same set of target points. 2025-04-22
r-n1qn1 public Provides 'Scilab' 'n1qn1'. This takes more memory than traditional L-BFGS. The n1qn1 routine is useful since it allows prespecification of a Hessian. If the Hessian is near enough the truth in optimization it can speed up the optimization problem. The algorithm is described in the 'Scilab' optimization documentation located at <https://www.scilab.org/sites/default/files/optimization_in_scilab.pdf>. This version uses manually modified code from 'f2c' to make this a C only binary. 2025-04-22
r-mwaved public Computes the Wavelet deconvolution estimate of a common signal present in multiple channels that have possible different levels of blur and long memory additive error, see Kulik, Sapatinas and Wishart (2015), <doi:10.1016/j.acha.2014.04.004>. 2025-04-22
r-mvt public Routines to perform estimation and inference under the multivariate t-distribution <doi:10.1007/s10182-022-00468-2>. Currently, the following methodologies are implemented: multivariate mean and covariance estimation, hypothesis testing about equicorrelation and homogeneity of variances, the Wilson-Hilferty transformation, QQ-plots with envelopes and random variate generation. 2025-04-22
r-mvrtn public Mean, variance, and random variates for left/right truncated normal distributions. 2025-04-22
r-mvnmle public Finds the Maximum Likelihood (ML) Estimate of the mean vector and variance-covariance matrix for multivariate normal data with missing values. 2025-04-22
r-mvnfast public Provides computationally efficient tools related to the multivariate normal and Student's t distributions. The main functionalities are: simulating multivariate random vectors, evaluating multivariate normal or Student's t densities and Mahalanobis distances. These tools are very efficient thanks to the use of C++ code and of the OpenMP API. 2025-04-22
r-mvna public Computes the Nelson-Aalen estimator of the cumulative transition hazard for arbitrary Markov multistate models <ISBN:978-0-387-68560-1>. 2025-04-22
r-mvcluster public Implementation of multi-view bi-clustering algorithms. When a sample is characterized by two or more sets of input features, it creates multiple data matrices for the same set of examples, each corresponding to a view. For instance, individuals who are diagnosed with a disorder can be described by their clinical symptoms (one view) and their genomic markers (another view). Rows of a data matrix correspond to examples and columns correspond to features. A multi-view bi-clustering algorithm groups examples (rows) consistently across the views and simultaneously identifies the subset of features (columns) in each view that are associated with the row groups. This mvcluster package includes three such methods. (1) MVSVDL1: multi-view bi-clustering based on singular value decomposition where the left singular vectors are used to identify row clusters and the right singular vectors are used to identify features (columns) for each row cluster. Each singular vector is regularized by the L1 vector norm. (2) MVLRRL0: multi-view bi-clustering based on sparse low rank representation (i.e., matrix approximation) where the decomposed components are regularized by the so-called L0 vector norm (which is not really a vector norm). (3) MVLRRL1: multi-view bi-clustering based on sparse low rank representation (i.e., matrix approximation) where the decomposed components are regularized by the L1 vector norm. 2025-04-22
r-mvb public Fit log-linear model for multivariate Bernoulli distribution with mixed effect models and LASSO 2025-04-22
r-mvar.pt public Pacote para analise multivariada, tendo funcoes que executam analise de correspondencia simples (CA) e multipla (MCA), analise de componentes principais (PCA), analise de correlacao canonica (CCA), analise fatorial (FA), escalonamento multidimensional (MDS), analise discriminante linear (LDA) e quadratica (QDA), analise de cluster hierarquico e nao hierarquico, regressao linear simples e multipla, analise de multiplos fatores (MFA) para dados quantitativos, qualitativos, de frequencia (MFACT) e dados mistos, biplot, scatter plot, projection pursuit (PP), grant tour e outras funcoes uteis para a analise multivariada. 2025-04-22
r-mvar public Package for multivariate analysis, having functions that perform simple correspondence analysis (CA) and multiple correspondence analysis (MCA), principal components analysis (PCA), canonical correlation analysis (CCA), factorial analysis (FA), multidimensional scaling (MDS), linear (LDA) and quadratic discriminant analysis (QDA), hierarchical and non-hierarchical cluster analysis, simple and multiple linear regression, multiple factor analysis (MFA) for quantitative, qualitative, frequency (MFACT) and mixed data, biplot, scatter plot, projection pursuit (PP), grant tour method and other useful functions for the multivariate analysis. 2025-04-22
r-multnonparam public A collection of multivariate nonparametric methods, selected in part to support an MS level course in nonparametric statistical methods. Methods include adjustments for multiple comparisons, implementation of multivariate Mann-Whitney-Wilcoxon testing, inversion of these tests to produce a confidence region, some permutation tests for linear models, and some algorithms for calculating exact probabilities associated with one- and two- stage testing involving Mann-Whitney-Wilcoxon statistics. Supported by grant NSF DMS 1712839. See Kolassa and Seifu (2013) <doi:10.1016/j.acra.2013.03.006>. 2025-04-22

© 2025 Anaconda, Inc. All Rights Reserved. (v4.2.2) Legal | Privacy Policy