About Anaconda Help Download Anaconda

r / packages / r-sgmcmc

Provides functions that performs popular stochastic gradient Markov chain Monte Carlo (SGMCMC) methods on user specified models. The required gradients are automatically calculated using 'TensorFlow' <https://www.tensorflow.org/>, an efficient library for numerical computation. This means only the log likelihood and log prior functions need to be specified. The methods implemented include stochastic gradient Langevin dynamics (SGLD), stochastic gradient Hamiltonian Monte Carlo (SGHMC), stochastic gradient Nose-Hoover thermostat (SGNHT) and their respective control variate versions for increased efficiency. References: M. Welling, Y. W. Teh (2011) <http://www.icml-2011.org/papers/398_icmlpaper.pdf>; T. Chen, E. B. Fox, C. E. Guestrin (2014) <arXiv:1402.4102>; N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, H. Neven (2014) <https://papers.nips.cc/paper/5592-bayesian-sampling-using-stochastic-gradient-thermostats>; J. Baker, P. Fearnhead, E. B. Fox, C. Nemeth (2017) <arXiv:1706.05439>. For more details see <doi:10.18637/jss.v091.i03>.

Type Size Name Uploaded Downloads Labels
conda 174.7 kB | noarch/r-sgmcmc-0.2.5-r42h142f84f_0.tar.bz2  2 years and 9 months ago 51 main
conda 278.0 kB | noarch/r-sgmcmc-0.2.4-r36h6115d3f_0.tar.bz2  5 years and 25 days ago 124 main

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.9) Legal | Privacy Policy