About Anaconda Help Download Anaconda
If you were automatically logged out you may need to refresh the page. You're trying to access a page that requires authentication. ×

Univariate and multivariate methods to analyze randomized response (RR) survey designs (e.g., Warner, S. L. (1965). Randomized response: A survey technique for eliminating evasive answer bias. Journal of the American Statistical Association, 60, 63–69, <doi:10.2307/2283137>). Besides univariate estimates of true proportions, RR variables can be used for correlations, as dependent variable in a logistic regression (with or without random effects), or as predictors in a linear regression (Heck, D. W., & Moshagen, M. (2018). RRreg: An R package for correlation and regression analyses of randomized response data. Journal of Statistical Software, 85(2), 1–29, <doi:10.18637/jss.v085.i02>). For simulations and the estimation of statistical power, RR data can be generated according to several models. The implemented methods also allow to test the link between continuous covariates and dishonesty in cheating paradigms such as the coin-toss or dice-roll task (Moshagen, M., & Hilbig, B. E. (2017). The statistical analysis of cheating paradigms. Behavior Research Methods, 49, 724–732, <doi:10.3758/s13428-016-0729-x>).

Type Size Name Uploaded Downloads Labels
conda 919.0 kB | noarch/r-rrreg-0.7.5-r43h142f84f_0.tar.bz2  1 year and 2 months ago 25 main
conda 913.3 kB | noarch/r-rrreg-0.7.3-r42h142f84f_0.tar.bz2  2 years and 9 months ago 52 main
conda 916.5 kB | noarch/r-rrreg-0.7.0-r36h6115d3f_0.tar.bz2  5 years and 25 days ago 116 main

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.9) Legal | Privacy Policy