About Anaconda Help Download Anaconda

Sensitivity (or recall or true positive rate), false positive rate, specificity, precision (or positive predictive value), negative predictive value, misclassification rate, accuracy, F-score- these are popular metrics for assessing performance of binary classifier for certain threshold. These metrics are calculated at certain threshold values. Receiver operating characteristic (ROC) curve is a common tool for assessing overall diagnostic ability of the binary classifier. Unlike depending on a certain threshold, area under ROC curve (also known as AUC), is a summary statistic about how well a binary classifier performs overall for the classification task. ROCit package provides flexibility to easily evaluate threshold-bound metrics. Also, ROC curve, along with AUC, can be obtained using different methods, such as empirical, binormal and non-parametric. ROCit encompasses a wide variety of methods for constructing confidence interval of ROC curve and AUC. ROCit also features the option of constructing empirical gains table, which is a handy tool for direct marketing. The package offers options for commonly used visualization, such as, ROC curve, KS plot, lift plot. Along with in-built default graphics setting, there are rooms for manual tweak by providing the necessary values as function arguments. ROCit is a powerful tool offering a range of things, yet it is very easy to use.

Click on a badge to see how to embed it in your web page
badge
https://anaconda.org/r/r-rocit/badges/version.svg
badge
https://anaconda.org/r/r-rocit/badges/latest_release_date.svg
badge
https://anaconda.org/r/r-rocit/badges/latest_release_relative_date.svg
badge
https://anaconda.org/r/r-rocit/badges/platforms.svg
badge
https://anaconda.org/r/r-rocit/badges/license.svg
badge
https://anaconda.org/r/r-rocit/badges/downloads.svg

© 2024 Anaconda, Inc. All Rights Reserved. (v4.0.5) Legal | Privacy Policy