About Anaconda Help Download Anaconda

r / packages / r-mvglmmrank

Maximum likelihood estimates are obtained via an EM algorithm with either a first-order or a fully exponential Laplace approximation as documented by Broatch and Karl (2018) <doi:10.48550/arXiv.1710.05284>, Karl, Yang, and Lohr (2014) <doi:10.1016/j.csda.2013.11.019>, and by Karl (2012) <doi:10.1515/1559-0410.1471>. Karl and Zimmerman <doi:10.1016/j.jspi.2020.06.004> use this package to illustrate how the home field effect estimator from a mixed model can be biased under nonrandom scheduling.

Click on a badge to see how to embed it in your web page
badge
https://anaconda.org/r/r-mvglmmrank/badges/version.svg
badge
https://anaconda.org/r/r-mvglmmrank/badges/latest_release_date.svg
badge
https://anaconda.org/r/r-mvglmmrank/badges/latest_release_relative_date.svg
badge
https://anaconda.org/r/r-mvglmmrank/badges/platforms.svg
badge
https://anaconda.org/r/r-mvglmmrank/badges/license.svg
badge
https://anaconda.org/r/r-mvglmmrank/badges/downloads.svg

© 2024 Anaconda, Inc. All Rights Reserved. (v4.0.6) Legal | Privacy Policy