Maximum likelihood estimation of random utility discrete choice models. The software is described in Croissant (2020) <doi:10.18637/jss.v095.i11> and the underlying methods in Train (2009) <doi:10.1017/CBO9780511805271>.
https://anaconda.org/r/r-mlogit/badges/version.svg
https://anaconda.org/r/r-mlogit/badges/latest_release_date.svg
https://anaconda.org/r/r-mlogit/badges/latest_release_relative_date.svg
https://anaconda.org/r/r-mlogit/badges/platforms.svg
https://anaconda.org/r/r-mlogit/badges/license.svg
https://anaconda.org/r/r-mlogit/badges/downloads.svg