CMD + K

r-liblinear

Anaconda Verified

A wrapper around the LIBLINEAR C/C++ library for machine learning (available at <https://www.csie.ntu.edu.tw/~cjlin/liblinear/>). LIBLINEAR is a simple library for solving large-scale regularized linear classification and regression. It currently supports L2-regularized classification (such as logistic regression, L2-loss linear SVM and L1-loss linear SVM) as well as L1-regularized classification (such as L2-loss linear SVM and logistic regression) and L2-regularized support vector regression (with L1- or L2-loss). The main features of LiblineaR include multi-class classification (one-vs-the rest, and Crammer & Singer method), cross validation for model selection, probability estimates (logistic regression only) or weights for unbalanced data. The estimation of the models is particularly fast as compared to other libraries.

Installation

To install this package, run one of the following:

Conda
$conda install r::r-liblinear

Usage Tracking

2.10_22
2.10_12
2 / 8 versions selected
Downloads (Last 6 months): 0

About

Summary

A wrapper around the LIBLINEAR C/C++ library for machine learning (available at <https://www.csie.ntu.edu.tw/~cjlin/liblinear/>). LIBLINEAR is a simple library for solving large-scale regularized linear classification and regression. It currently supports L2-regularized classification (such as logistic regression, L2-loss linear SVM and L1-loss linear SVM) as well as L1-regularized classification (such as L2-loss linear SVM and logistic regression) and L2-regularized support vector regression (with L1- or L2-loss). The main features of LiblineaR include multi-class classification (one-vs-the rest, and Crammer & Singer method), cross validation for model selection, probability estimates (logistic regression only) or weights for unbalanced data. The estimation of the models is particularly fast as compared to other libraries.

Last Updated

Jun 27, 2022 at 19:25

License

GPL-2

Total Downloads

124

Supported Platforms

linux-64