An implementation of the 'k-means--' algorithm proposed by Chawla and Gionis, 2013 in their paper, "k-means-- : A unified approach to clustering and outlier detection. SIAM International Conference on Data Mining (SDM13)", <doi:10.1137/1.9781611972832.21> and using 'ordering' described by Howe, 2013 in the thesis, Clustering and anomaly detection in tropical cyclones". Useful for creating (potentially) tighter clusters than standard k-means and simultaneously finding outliers inexpensively in multidimensional space.