Maximin-projection learning (MPL, Shi, et al., 2018) is implemented for recommending a meaningful and reliable individualized treatment regime for future groups of patients based on the observed data from different populations with heterogeneity in individualized decision making. Q-learning and A-learning are implemented for estimating the groupwise contrast function that shares the same marginal treatment effects. The packages contains classical Q-learning and A-learning algorithms for a single stage study as a byproduct. More functions will be added at later versions.
Label | Latest Version |
---|---|
main | 1.0_1 |