CMD + K

r-hdcpdetect

Anaconda Verified

Objective: Implement new methods for detecting change points in high-dimensional time series data. These new methods can be applied to non-Gaussian data, account for spatial and temporal dependence, and detect a wide variety of change-point configurations, including changes near the boundary and changes in close proximity. Additionally, this package helps address the “small n, large p” problem, which occurs in many research contexts. This problem arises when a dataset contains changes that are visually evident but do not rise to the level of statistical significance due to the small number of observations and large number of parameters. The problem is overcome by treating the dimensions as a whole and scaling the test statistics only by its standard deviation, rather than scaling each dimension individually. Due to the computational complexity of the functions, the package runs best on datasets with a relatively large number of attributes but no more than a few hundred observations.

Installation

To install this package, run one of the following:

Conda
$conda install r::r-hdcpdetect

Usage Tracking

0.1.0
1 / 8 versions selected
Total downloads: 0

About

Summary

Objective: Implement new methods for detecting change points in high-dimensional time series data. These new methods can be applied to non-Gaussian data, account for spatial and temporal dependence, and detect a wide variety of change-point configurations, including changes near the boundary and changes in close proximity. Additionally, this package helps address the “small n, large p” problem, which occurs in many research contexts. This problem arises when a dataset contains changes that are visually evident but do not rise to the level of statistical significance due to the small number of observations and large number of parameters. The problem is overcome by treating the dimensions as a whole and scaling the test statistics only by its standard deviation, rather than scaling each dimension individually. Due to the computational complexity of the functions, the package runs best on datasets with a relatively large number of attributes but no more than a few hundred observations.

Information Last Updated

Apr 22, 2025 at 15:31

License

GPL-3

Total Downloads

107

Platforms

Linux 64 Version: 0.1.0