CMD + K

r-elmso

Anaconda Verified

An implementation of the algorithm described in "Efficient Large- Scale Internet Media Selection Optimization for Online Display Advertising" by Paulson, Luo, and James (Journal of Marketing Research 2018; see URL below for journal text/citation and <http://faculty.marshall.usc.edu/gareth-james/Research/ELMSO.pdf> for a full-text version of the paper). The algorithm here is designed to allocate budget across a set of online advertising opportunities using a coordinate-descent approach, but it can be used in any resource-allocation problem with a matrix of visitation (in the case of the paper, website page- views) and channels (in the paper, websites). The package contains allocation functions both in the presence of bidding, when allocation is dependent on channel-specific cost curves, and when advertising costs are fixed at each channel.

Installation

To install this package, run one of the following:

Conda
$conda install r::r-elmso

Usage Tracking

1.0.1
1.0.0
2 / 8 versions selected
Downloads (Last 6 months): 0

About

Summary

An implementation of the algorithm described in "Efficient Large- Scale Internet Media Selection Optimization for Online Display Advertising" by Paulson, Luo, and James (Journal of Marketing Research 2018; see URL below for journal text/citation and <http://faculty.marshall.usc.edu/gareth-james/Research/ELMSO.pdf> for a full-text version of the paper). The algorithm here is designed to allocate budget across a set of online advertising opportunities using a coordinate-descent approach, but it can be used in any resource-allocation problem with a matrix of visitation (in the case of the paper, website page- views) and channels (in the paper, websites). The package contains allocation functions both in the presence of bidding, when allocation is dependent on channel-specific cost curves, and when advertising costs are fixed at each channel.

Last Updated

Jun 27, 2022 at 19:55

License

GPL-3

Total Downloads

278

Supported Platforms

noarch