About Anaconda Help Download Anaconda

orduka / packages / pandas_market_calendars 0.20.1

Market and exchange trading calendars for pandas

Installers

  • linux-64 v0.20.1
  • win-64 v0.20.1

conda install

To install this package run one of the following:
conda install orduka::pandas_market_calendars

Description

pandasmarketcalendars

Market calendars to use with pandas for trading applications.

.. image:: https://badge.fury.io/py/pandas-market-calendars.svg :target: https://badge.fury.io/py/pandas-market-calendars

.. image:: https://travis-ci.org/rsheftel/pandasmarketcalendars.svg?branch=master :target: https://travis-ci.org/rsheftel/pandasmarketcalendars

.. image:: https://coveralls.io/repos/github/rsheftel/pandasmarketcalendars/badge.svg?branch=master :target: https://coveralls.io/github/rsheftel/pandasmarketcalendars?branch=master

.. image:: https://landscape.io/github/rsheftel/pandasmarketcalendars/master/landscape.svg?style=flat :target: https://landscape.io/github/rsheftel/pandasmarketcalendars/master :alt: Code Health

.. image:: https://readthedocs.org/projects/pandas-market-calendars/badge/?version=latest :target: http://pandas-market-calendars.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status

Documentation

http://pandasmarketcalendars.readthedocs.io/en/latest/

Overview

The Pandas package is widely used in finance and specifically for time series analysis. It includes excellent functionality for generating sequences of dates and capabilities for custom holiday calendars, but as an explicit design choice it does not include the actual holiday calendars for specific exchanges or OTC markets.

The pandasmarketcalendars package looks to fill that role with the holiday, late open and early close calendars for specific exchanges and OTC conventions. pandasmarketcalendars also adds several functions to manipulate the market calendars and includes a date_range function to create a pandas DatetimeIndex including only the datetimes when the markets are open.

This package is a fork of the Zipline package from Quantopian and extracts just the relevant parts. All credit for their excellent work to Quantopian.

Installation

pip install pandas_market_calendars

Arch Linux package available here: https://aur.archlinux.org/packages/python-pandasmarketcalendars/

Quick Start

.. code:: python

import pandas_market_calendars as mcal

# Create a calendar
nyse = mcal.get_calendar('NYSE')

# Show available calendars
print(mcal.get_calendar_names())

.. code:: python

early = nyse.schedule(start_date='2012-07-01', end_date='2012-07-10')
early

.. parsed-literal::

                  market_open             market_close
=========== ========================= =========================
 2012-07-02 2012-07-02 13:30:00+00:00 2012-07-02 20:00:00+00:00
 2012-07-03 2012-07-03 13:30:00+00:00 2012-07-03 17:00:00+00:00
 2012-07-05 2012-07-05 13:30:00+00:00 2012-07-05 20:00:00+00:00
 2012-07-06 2012-07-06 13:30:00+00:00 2012-07-06 20:00:00+00:00
 2012-07-09 2012-07-09 13:30:00+00:00 2012-07-09 20:00:00+00:00
 2012-07-10 2012-07-10 13:30:00+00:00 2012-07-10 20:00:00+00:00

.. code:: python

mcal.date_range(early, frequency='1D')

.. parsed-literal::

DatetimeIndex(['2012-07-02 20:00:00+00:00', '2012-07-03 17:00:00+00:00',
               '2012-07-05 20:00:00+00:00', '2012-07-06 20:00:00+00:00',
               '2012-07-09 20:00:00+00:00', '2012-07-10 20:00:00+00:00'],
              dtype='datetime64[ns, UTC]', freq=None)

.. code:: python

mcal.date_range(early, frequency='1H')

.. parsed-literal::

DatetimeIndex(['2012-07-02 14:30:00+00:00', '2012-07-02 15:30:00+00:00',
               '2012-07-02 16:30:00+00:00', '2012-07-02 17:30:00+00:00',
               '2012-07-02 18:30:00+00:00', '2012-07-02 19:30:00+00:00',
               '2012-07-02 20:00:00+00:00', '2012-07-03 14:30:00+00:00',
               '2012-07-03 15:30:00+00:00', '2012-07-03 16:30:00+00:00',
               '2012-07-03 17:00:00+00:00', '2012-07-05 14:30:00+00:00',
               '2012-07-05 15:30:00+00:00', '2012-07-05 16:30:00+00:00',
               '2012-07-05 17:30:00+00:00', '2012-07-05 18:30:00+00:00',
               '2012-07-05 19:30:00+00:00', '2012-07-05 20:00:00+00:00',
               '2012-07-06 14:30:00+00:00', '2012-07-06 15:30:00+00:00',
               '2012-07-06 16:30:00+00:00', '2012-07-06 17:30:00+00:00',
               '2012-07-06 18:30:00+00:00', '2012-07-06 19:30:00+00:00',
               '2012-07-06 20:00:00+00:00', '2012-07-09 14:30:00+00:00',
               '2012-07-09 15:30:00+00:00', '2012-07-09 16:30:00+00:00',
               '2012-07-09 17:30:00+00:00', '2012-07-09 18:30:00+00:00',
               '2012-07-09 19:30:00+00:00', '2012-07-09 20:00:00+00:00',
               '2012-07-10 14:30:00+00:00', '2012-07-10 15:30:00+00:00',
               '2012-07-10 16:30:00+00:00', '2012-07-10 17:30:00+00:00',
               '2012-07-10 18:30:00+00:00', '2012-07-10 19:30:00+00:00',
               '2012-07-10 20:00:00+00:00'],
              dtype='datetime64[ns, UTC]', freq=None)

Future

This package is open sourced under the MIT license. Everyone is welcome to add more exchanges or OTC markets, confirm or correct the existing calendars, and generally do whatever they desire with this code.


© 2025 Anaconda, Inc. All Rights Reserved. (v4.1.0) Legal | Privacy Policy