About Anaconda Help Download Anaconda

neutrinomuon / packages / pykinematicalbroadening 0.0.9

Kinematical broadening in velocity space (km/s)

Installers

  • linux-32 v0.0.9
  • linux-64 v0.0.9
  • linux-aarch64 v0.0.9
  • linux-armv6l v0.0.9
  • linux-armv7l v0.0.9
  • linux-ppc64 v0.0.9
  • linux-ppc64le v0.0.9
  • linux-s390x v0.0.9
  • osx-64 v0.0.9
  • osx-arm64 v0.0.9
  • win-32 v0.0.9
  • win-64 v0.0.9
  • win-arm64 v0.0.7

conda install

To install this package run one of the following:
conda install neutrinomuon::pykinematicalbroadening

Description

PyKinematicalBroadening

email: [email protected], [email protected]

© Copyright ®

J.G. - Jean Gomes


python3


RESUME

PyKinematicalBroadening is an Extragalactic Kinematics repository for applying a kernel in velocity space to models in order to obtain the respective broadened model. This is a python code that performs kinematical broadening of a spectrum by applying a kernel in velocity space to a model, and obtaining the respective broadened model. The code defines the function broadening, which performs the convolution with a Gaussian kernel. The kernel is generated using a certain number of points, which can be set with the Ni_Gauss parameter. The code then reads in a test spectrum from a file, interpolates it onto a set of equally spaced wavelength values, and then plots the original and broadened spectra for different velocity dispersions.

In detail, the GaussianConvolution function convolves a given input spectrum fluxeso defined at wavelengths lambdao with a Gaussian kernel of width vdsigma and mean velocity vc0gals. The kernel is defined with NiGauss points, which should be at least as large as vdsigma. The output spectrum is defined at wavelengths lambdas, and is returned as fluxess. The fill_val parameter defines the value to use for regions outside of the original wavelength range, and verbosity controls the level of detail of console output.

The main code reads in a test spectrum from a file and interpolates it onto a set of equally spaced wavelength values. It then loops over different velocity dispersions and calls 'broadening' for each one, broadening the spectrum and plotting the results.


INSTALLATION

You can easily install PyKinematicalBroadening by using pip - PyPI - The Python Package Index:

pip install PyKinematicalBroadening


or by using a generated conda repository https://anaconda.org/neutrinomuon/PyKinematicalBroadening:

badgetanaconda badgetreleasedate badgetplatforms

conda install -c neutrinomuon PyKinematicalBroadening


OBS.: Linux, OS-X ad Windows pre-compilations available in conda.

You can also clone the repository and install by yourself in your machine:

git clone https://github.com/neutrinomuon/PyKinematicalBroadening
python setup.py install

EXAMPLE

Example of the testspectrum testspectrum.spec successively broadened by different velocity dispersions in [km/s]. The code is not optimized for cpu speed, but it shows the principle of how it works.


STRUCTURE

PyKinematicalBroadening
├── MANIFEST.in
├── dist
│   ├── PyKinematicalBroadening-0.0.3.tar.gz
│   ├── PyKinematicalBroadening-0.0.5.tar.gz
│   ├── PyKinematicalBroadening-0.0.6.tar.gz
│   └── PyKinematicalBroadening-0.0.4.tar.gz
├── README.md
├── figures
│   ├── KinematicalBroadening.png
│   └── cc_logo.png
├── PyKinematicalBroadening.egg-info
│   ├── PKG-INFO
│   ├── dependency_links.txt
│   ├── SOURCES.txt
│   ├── top_level.txt
│   └── requires.txt
├── LICENSE.txt
├── setup.py
├── tutorials
│   ├── .ipynb_checkpoints
│   │   └── Example 1 - Kinematical Broadening-checkpoint.ipynb
│   └── Example 1 - Kinematical Broadening.ipynb
├── pykinematicalbroadening
│   ├── win-32
│   │   └── pykinematicalbroadening-0.0.5-py39_0.tar.bz2
│   ├── linux-armv7l
│   │   └── pykinematicalbroadening-0.0.5-py39_0.tar.bz2
│   ├── linux-armv6l
│   │   ├── .projectignore
│   │   └── pykinematicalbroadening-0.0.5-py39_0.tar.bz2
│   ├── linux-s390x
│   │   └── pykinematicalbroadening-0.0.5-py39_0.tar.bz2
│   ├── linux-ppc64
│   │   └── pykinematicalbroadening-0.0.5-py39_0.tar.bz2
│   ├── linux-aarch64
│   │   ├── .projectignore
│   │   └── pykinematicalbroadening-0.0.5-py39_0.tar.bz2
│   ├── linux-32
│   │   ├── .projectignore
│   │   └── pykinematicalbroadening-0.0.5-py39_0.tar.bz2
│   ├── linux-64
│   │   ├── .projectignore
│   │   └── pykinematicalbroadening-0.0.5-py39_0.tar.bz2
│   ├── osx-64
│   │   └── pykinematicalbroadening-0.0.5-py39_0.tar.bz2
│   ├── meta.yaml
│   ├── win-64
│   │   └── pykinematicalbroadening-0.0.5-py39_0.tar.bz2
│   ├── README.txt
│   ├── linux-ppc64le
│   │   └── pykinematicalbroadening-0.0.5-py39_0.tar.bz2
│   └── osx-arm64
│       └── pykinematicalbroadening-0.0.5-py39_0.tar.bz2
├── Pykinematicalbroadening.egg-info
│   ├── PKG-INFO
│   ├── dependency_links.txt
│   ├── SOURCES.txt
│   ├── top_level.txt
│   └── requires.txt
├── src
│   └── python
│       ├── __pycache__
│       ├── test_spectrum.spec
│       ├── __init__.py
│       └── PyKinematicalBroadening.py
├── version.txt
└── build
    └── lib
        ├── Pykinematicalbroadening
        └── PyKinematicalBroadening

26 directories, 44 files

REFERENCES

    Bureau, M., et al. "The SAURON project - III. Integral-field absorption-line kinematics of 48 elliptical and lenticular galaxies." Monthly Notices of the Royal Astronomical Society, vol. 370, no. 2, 2006, pp. 753-771. DOI: 10.1111/j.1365-2966.2006.10998.x. Available at: https://academic.oup.com/mnras/article/370/2/753/1004246. Faber, S. M. "The Stellar Population Histories of Elliptical Galaxies: A Review." Annual Review of Astronomy and Astrophysics, vol. 46, no. 1, 2008, pp. 121-157. DOI: 10.1146/annurev-astro-082708-101650. Available at: https://www.annualreviews.org/doi/10.1146/annurev-astro-082708-101650. Peletier, R. F., et al. "The SAURON project - XI. Stellar populations from absorption-line strength maps of 24 early-type spirals." Monthly Notices of the Royal Astronomical Society, vol. 379, no. 2, 2007, pp. 445-469. DOI: 10.1111/j.1365-2966.2007.11803.x. Available at: https://academic.oup.com/mnras/article/379/2/445/1078958. Maraston, C. "Spectral Synthesis of Stellar Populations with Star Formation Histories." Monthly Notices of the Royal Astronomical Society, vol. 362, no. 3, 2005, pp. 799-825. DOI: 10.1111/j.1365-2966.2005.09340.x. Available at: https://academic.oup.com/mnras/article/362/3/799/986891.

LICENSE

Attribution-NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0)

Creative Commons Attribution-NonCommercial-NoDerivs (CC-BY-NC-ND)


© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.9) Legal | Privacy Policy