About Anaconda Help Download Anaconda

Fast methods for learning sparse Bayesian networks from high-dimensional data using sparse regularization, as described in Aragam, Gu, and Zhou (2017) <arXiv:1703.04025>. Designed to handle mixed experimental and observational data with thousands of variables with either continuous or discrete observations.

copied from cf-staging / r-sparsebn
Type Size Name Uploaded Downloads Labels
conda 1.4 MB | noarch/r-sparsebn-0.1.0-r36h6115d3f_1.tar.bz2  4 years and 11 months ago 2949 main
conda 1.4 MB | noarch/r-sparsebn-0.1.0-r40h6115d3f_1.tar.bz2  4 years and 11 months ago 2964 main
conda 1.4 MB | noarch/r-sparsebn-0.1.0-r36h6115d3f_0.tar.bz2  5 years and 5 months ago 3558 main cf202003
conda 1.4 MB | noarch/r-sparsebn-0.1.0-r35h6115d3f_0.tar.bz2  5 years and 5 months ago 3526 main cf202003

© 2025 Anaconda, Inc. All Rights Reserved. (v4.0.9) Legal | Privacy Policy