CMD + K

gnr

Community

granger causality analysis

Installation

To install this package, run one of the following:

Conda
$conda install dsm-72::gnr

Usage Tracking

0.0.4
0.0.1
2 / 8 versions selected
Downloads (Last 6 months): 0

Description

gnr

This file will become your README and also the index of your documentation.

Developer Guide

Setup

# create conda environment
$ mamba env create -f env.yml

# update conda environment
$ mamba env update -n gnr --file env.yml
# $ mamba env update -n gnr --file env.mac.yml

Install

pip install -e .

# install from pypi
pip install gnr

nbdev

# activate conda environment
$ conda activate gnr

# make sure the gnr package is installed in development mode
$ pip install -e .

 to the gnr package
$ nbdev_prepare

Note: it might be useful to use the following snippet to enable hot reloading:

%load_ext autoreload
%autoreload 2

Publishing

# publish to pypi
$ nbdev_pypi

# publish to conda
$ nbdev_conda --build_args '-c conda-forge'

Usage

Installation

Install latest from the GitHub repository:

$ pip install git+https://github.com/dsm-72/gnr.git

or from conda

$ conda install -c dsm-72 gnr

or from pypi

$ pip install gnr
df_trj = make_mock_genes_x_tbins()
df_trj.head()
| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ... | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | |-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | wasf | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | colq | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | ... | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | gpr1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | | chrm3 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | ... | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | lmod2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | ... | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |

5 rows × 100 columns

gc_op = GrangerCausality(n_jobs=2)
df_res = gc_op.fit_transform(df_trj, fit_params={'standard_scaler':True, 'signed_correlation': True})
df_res.head()
| | wasf_y | colq_y | gpr1_y | chrm3_y | lmod2_y | tek_y | kank3_y | oca2_y | taz_y | map4k1_y | |---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------| | wasf_x | 1.000000 | 0.683091 | 0.314458 | 0.144127 | 0.000818 | 1.000000 | 1.000000 | 0.000066 | 0.102470 | 0.006449 | | colq_x | 1.000000 | 1.000000 | 0.779284 | 1.000000 | 1.000000 | 0.001091 | 0.192685 | 0.675090 | 1.000000 | 0.806543 | | gpr1_x | 0.805541 | 0.042286 | 1.000000 | 0.892251 | 0.795418 | 0.823063 | 1.000000 | 0.542452 | 0.001091 | 0.852052 | | chrm3_x | 0.001091 | 0.073638 | 0.168425 | 1.000000 | 0.632585 | 1.000000 | 0.102470 | 0.542452 | 1.000000 | 0.367649 | | lmod2_x | 0.683091 | 0.000104 | 0.031086 | 0.220671 | 1.000000 | 0.683091 | 0.000818 | 0.367649 | 1.000000 | 0.017608 |
gc_op.plot_df_org(figsize=(4,4))

gc_op.plot_df_res(figsize=(4,4))

Documentation

Documentation can be found hosted on GitHub repository pages. Additionally you can find package manager specific guidelines on conda and pypi respectively.

About

Summary

granger causality analysis

Last Updated

Nov 9, 2023 at 17:17

License

Apache Software

Total Downloads

17

Supported Platforms

noarch