gnr
granger causality analysis
granger causality analysis
To install this package, run one of the following:
This file will become your README and also the index of your documentation.
# create conda environment
$ mamba env create -f env.yml
# update conda environment
$ mamba env update -n gnr --file env.yml
# $ mamba env update -n gnr --file env.mac.yml
pip install -e .
# install from pypi
pip install gnr
# activate conda environment
$ conda activate gnr
# make sure the gnr package is installed in development mode
$ pip install -e .
to the gnr package
$ nbdev_prepare
Note: it might be useful to use the following snippet to enable hot reloading:
%load_ext autoreload
%autoreload 2
# publish to pypi
$ nbdev_pypi
# publish to conda
$ nbdev_conda --build_args '-c conda-forge'
Install latest from the GitHub repository:
$ pip install git+https://github.com/dsm-72/gnr.git
or from conda
$ conda install -c dsm-72 gnr
or from pypi
$ pip install gnr
df_trj = make_mock_genes_x_tbins()
df_trj.head()
5 rows × 100 columns
gc_op = GrangerCausality(n_jobs=2)
df_res = gc_op.fit_transform(df_trj, fit_params={'standard_scaler':True, 'signed_correlation': True})
df_res.head()
gc_op.plot_df_org(figsize=(4,4))

gc_op.plot_df_res(figsize=(4,4))

Documentation can be found hosted on GitHub repository pages. Additionally you can find package manager specific guidelines on conda and pypi respectively.
Summary
granger causality analysis
Last Updated
Nov 9, 2023 at 17:17
License
Apache Software
Total Downloads
17
Supported Platforms
GitHub Repository
https://github.com/dsm-72/gnrDocumentation
https://dsm-72.github.io/gnr