CMD + K

r-stochvol

Community

Efficient algorithms for fully Bayesian estimation of stochastic volatility (SV) models with and without asymmetry (leverage) via Markov chain Monte Carlo (MCMC) methods. Methodological details are given in Kastner and Frühwirth-Schnatter (2014) <doi:10.1016/j.csda.2013.01.002> and Hosszejni and Kastner (2019) <doi:10.1007/978-3-030-30611-3_8>; the most common use cases are described in Hosszejni and Kastner (2021) <doi:10.18637/jss.v100.i12> and Kastner (2016) <doi:10.18637/jss.v069.i05> and the package examples.

Installation

To install this package, run one of the following:

Conda
$conda install conda-forge::r-stochvol

Usage Tracking

3.2.8
3.2.7
3.2.6
3.2.5
3.2.4
5 / 8 versions selected
Downloads (Last 6 months): 0

About

Summary

Efficient algorithms for fully Bayesian estimation of stochastic volatility (SV) models with and without asymmetry (leverage) via Markov chain Monte Carlo (MCMC) methods. Methodological details are given in Kastner and Frühwirth-Schnatter (2014) <doi:10.1016/j.csda.2013.01.002> and Hosszejni and Kastner (2019) <doi:10.1007/978-3-030-30611-3_8>; the most common use cases are described in Hosszejni and Kastner (2021) <doi:10.18637/jss.v100.i12> and Kastner (2016) <doi:10.18637/jss.v069.i05> and the package examples.

Last Updated

Oct 13, 2025 at 10:47

License

GPL-2.0-or-later

Total Downloads

16.1K

Supported Platforms

macOS-64
macOS-arm64
win-64
linux-ppc64le
linux-aarch64
linux-64