CMD + K

r-bit

Community

True boolean datatype (no NAs), coercion from and to logicals, integers and integer subscripts; fast boolean operators and fast summary statistics. With 'bit' vectors you can store true binary booleans {FALSE,TRUE} at the expense of 1 bit only, on a 32 bit architecture this means factor 32 less RAM and ~ factor 32 more speed on boolean operations. Due to overhead of R calls, actual speed gain depends on the size of the vector: expect gains for vectors of size > 10000 elements. Even for one-time boolean operations it can pay-off to convert to bit, the pay-off is obvious, when such components are used more than once. Reading from and writing to bit is approximately as fast as accessing standard logicals - mostly due to R's time for memory allocation. The package allows to work with pre-allocated memory for return values by calling .Call() directly: when evaluating the speed of C-access with pre-allocated vector memory, coping from bit to logical requires only 70% of the time for copying from logical to logical; and copying from logical to bit comes at a performance penalty of 150%. the package now contains further classes for representing logical selections: 'bitwhich' for very skewed selections and 'ri' for selecting ranges of values for chunked processing. All three index classes can be used for subsetting 'ff' objects (ff-2.1-0 and higher).

Installation

To install this package, run one of the following:

Conda
$conda install conda-forge::r-bit

Usage Tracking

4.6.0
4.5.0.1
4.5.0
4.0.5
4.0.4
5 / 8 versions selected
Downloads (Last 6 months): 0

About

Summary

True boolean datatype (no NAs), coercion from and to logicals, integers and integer subscripts; fast boolean operators and fast summary statistics. With 'bit' vectors you can store true binary booleans {FALSE,TRUE} at the expense of 1 bit only, on a 32 bit architecture this means factor 32 less RAM and ~ factor 32 more speed on boolean operations. Due to overhead of R calls, actual speed gain depends on the size of the vector: expect gains for vectors of size > 10000 elements. Even for one-time boolean operations it can pay-off to convert to bit, the pay-off is obvious, when such components are used more than once. Reading from and writing to bit is approximately as fast as accessing standard logicals - mostly due to R's time for memory allocation. The package allows to work with pre-allocated memory for return values by calling .Call() directly: when evaluating the speed of C-access with pre-allocated vector memory, coping from bit to logical requires only 70% of the time for copying from logical to logical; and copying from logical to bit comes at a performance penalty of 150%. the package now contains further classes for representing logical selections: 'bitwhich' for very skewed selections and 'ri' for selecting ranges of values for chunked processing. All three index classes can be used for subsetting 'ff' objects (ff-2.1-0 and higher).

Last Updated

Mar 6, 2025 at 20:19

License

GPL-2.0-or-later

Total Downloads

2.4M

Supported Platforms

macOS-arm64
macOS-64
win-64
linux-64
linux-ppc64le
linux-aarch64