Spectrum Analysis Tools
.. image:: https://badge.fury.io/py/spectrum.svg :target: https://badge.fury.io/py/spectrum.svg
.. image:: https://pypip.in/d/spectrum/badge.png :target: https://crate.io/packages/spectrum/
.. image:: https://secure.travis-ci.org/cokelaer/spectrum.png :target: http://travis-ci.org/cokelaer/spectrum
.. image:: https://coveralls.io/repos/cokelaer/spectrum/badge.png?branch=master :target: https://coveralls.io/r/cokelaer/spectrum?branch=master
.. image:: https://landscape.io/github/cokelaer/spectrum/master/landscape.png :target: https://landscape.io/github/cokelaer/spectrum/master
.. image:: https://badge.waffle.io/cokelaer/spectrum.png?label=ready&title=Ready :target: https://waffle.io/cokelaer/spectrum
:contributions: Please join https://github.com/cokelaer/spectrum :issues: Please use https://github.com/cokelaer/spectrum/issues
.. image:: http://www.thomas-cokelaer.info/software/spectrum/html/images/psdall.png :class: align-right :width: 50%
Spectrum contains tools to estimate Power Spectral Densities using methods based on Fourier transform, Parametric methods or eigenvalues analysis:
* The Fourier methods are based upon correlogram, periodogram and Welch estimates. Standard tapering windows (Hann, Hamming, Blackman) and more exotic ones are available (DPSS, Taylor, ...).
* The parametric methods are based on Yule-Walker, BURG, MA and ARMA, covariance and modified covariance methods.
* Non-parametric methods based on eigen analysis (e.g., MUSIC) and minimum variance analysis are also implemented.
* Multitapering is also available
::
pip install spectrum
Please see github <http://github.com/cokelaer/spectrum>
_ for any issues/bugs/comments/contributions.