About Anaconda Help Download Anaconda

Provides implementation of the "Topic SCORE" algorithm that is proposed by Tracy Ke and Minzhe Wang. The singular value decomposition step is optimized through the usage of svds() function in 'RSpectra' package, on a 'dgRMatrix' sparse matrix. Also provides a column-wise error measure in the word-topic matrix A, and an algorithm for recovering the topic-document matrix W given A and D based on quadratic programming. The details about the techniques are explained in the paper "A new SVD approach to optimal topic estimation" by Tracy Ke and Minzhe Wang (2017) <arXiv:1704.07016>.

Label Latest Version
main 0.0.1

© 2024 Anaconda, Inc. All Rights Reserved. (v4.0.5) Legal | Privacy Policy