Library of Stan Models for Survival Analysis
author: Jacki Novik
Library of Stan Models for Survival Analysis
Features:
Install using pip, as:
$ pip install survivalstan
Or, you can clone the repo:
$ git clone https://github.com/hammerlab/survivalstan.git
$ pip install .
Details to come. For now, please do not hesitate to contribute if you would like.
There are several examples included in the example-notebooks, roughly one corresponding to each model.
If you are not sure where to start, Test pemsurvivalmodel with simulated data.ipynb contains the most explanatory text. Many of the other notebooks are sparse on explanation, but do illustrate variations on the different models.
For basic usage:
import survivalstan
import stanity
import seaborn as sb
import matplotlib.pyplot as plt
import statsmodels
## load flchain test data from R's `survival` package
dataset = statsmodels.datasets.get_rdataset(package = 'survival', dataname = 'flchain' )
d = dataset.data.query('futime > 7')
d.reset_index(level = 0, inplace = True)
## e.g. fit Weibull survival model
testfit_wei = survivalstan.fit_stan_survival_model(
model_cohort = 'Weibull model',
model_code = survivalstan.models.weibull_survival_model,
df = d,
time_col = 'futime',
event_col = 'death',
formula = 'age + sex',
iter = 3000,
chains = 4,
make_inits = survivalstan.make_weibull_survival_model_inits
)
## coefplot for Weibull coefficient estimates
sb.boxplot(x = 'value', y = 'variable', data = testfit_wei['coefs'])
## or, use plot_coefs
survivalstan.utils.plot_coefs([testfit_wei])
## print summary of MCMC draws from posterior for each parameter
print(testfit_wei['fit'])
## e.g. fit Piecewise-exponential survival model
dlong = survivalstan.prep_data_long_surv(d, time_col = 'futime', event_col = 'death')
testfit_pem = survivalstan.fit_stan_survival_model(
model_cohort = 'PEM model',
model_code = survivalstan.models.pem_survival_model,
df = dlong,
sample_col = 'index',
timepoint_end_col = 'end_time',
event_col = 'end_failure',
formula = 'age + sex',
iter = 3000,
chains = 4,
)
## print summary of MCMC draws from posterior for each parameter
print(testfit_pem['fit'])
## coefplot for PEM model results
sb.boxplot(x = 'value', y = 'variable', data = testfit_pem['coefs'])
## plot baseline hazard (only PEM models)
survivalstan.utils.plot_coefs([testfit_pem], element='baseline')
## posterior-predictive checking (only PEM models)
survivalstan.utils.plot_pp_survival([testfit_pem])
## e.g. compare models using PSIS-LOO
stanity.loo_compare(testfit_wei['loo'], testfit_pem['loo'])
## compare coefplots
sb.boxplot(x = 'value', y = 'variable', hue = 'model_cohort',
data = testfit_pem['coefs'].append(testfit_wei['coefs']))
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
## (or, use survivalstan.utils.plot_coefs)
survivalstan.utils.plot_coefs([testfit_wei, testfit_pem])